Evaluierung der inländischen KfW-Programme zur Förderung Erneuerbarer Energien in den Jahren 2015 und 2016

Gutachten im Auftrag der KfW Bankengruppe

November 2017
Zentrum für Sonnenenergie- und Wasserstoff-Forschung
Baden-Württemberg (ZSW)
Meitnerstraße 1, D-70563 Stuttgart

Dr. Peter Bickel
E-Mail: Peter.Bickel@zsw-bw.de
Telefon: +49-(0)711-7870-244

Tobias Kelm
E-Mail: Tobias.Kelm@zsw-bw.de
Telefon: +49-(0)711-7870-250

Unterauftragnehmer:
Dr. Dietmar Edler, Berlin – Ermittlung der Bruttobeschäftigung

Stuttgart, den 30. November 2017
Inhaltsverzeichnis

Abbildungsverzeichnis .. V
Tabellenverzeichnis ... VI
Abkürzungsverzeichnis .. XI
Zusammenfassung für politische Entscheidungsträger .. XIII
Abstract for Political Decision Makers .. XV

1 Einführung .. 1

2 Überblick über die geförderten Vorhaben... 3
 2.1 Förderprogramme ... 3
 2.2 Datengrundlage Förderjahrgänge 2015 und 2016 ... 5

3 Wirkungen durch geförderte Anlagen in Deutschland ... 7
 3.1 Investitionsvolumen und geförderte Leistung ... 7
 3.1.1 Ausgelöstes Investitionsvolumen .. 7
 3.1.2 Geförderte Leistung ...11
 3.1.3 Vergleich der Förderjahrgänge 2015 und 201615
 3.2 Einsparung fossiler Energieträger ... 17
 3.2.1 Einsparung fossiler Energieträger und vermiedene Energieimporte17
 3.2.2 Vergleich der Förderjahrgänge 2015 und 201622
 3.3 Vermiedene Emissionen und vermiedene externe Kosten24
 3.3.1 Vermiedene Treibhausgasemissionen ...24
 3.3.2 Vermiedene Luftschadstoffemissionen...27
 3.3.3 Vermiedene externe Kosten ..30
 3.3.4 Vergleich der Förderjahrgänge 2015 und 201634
 3.4 Bruttobeschäftigungseffekte in Deutschland...36
 3.4.1 Eingangsdaten ...37
 3.4.2 Ergebnisse ...38
 3.4.3 Vergleich der Förderjahrgänge 2015 und 201642

4 Wirkungen durch geförderte Anlagen im Ausland ..44
 4.1 Investitionsvolumen und geförderte Leistung ...44
 4.1.1 Ausgelöstes Investitionsvolumen und geförderte Leistung44
 4.1.2 Vergleich der Förderjahrgänge 2015 und 201645
 4.2 Vermiedene Treibhausgasemissionen ...46

Literaturverzeichnis ...48

Anhang ...51
 A.1 Ermittlung der Einsparung fossiler Energieträger durch geförderte
 Anlagen mit Standort in Deutschland ...51
 A.2 Ermittlung vermiedener Emissionen von Treibhausgasen und
 Luftschadstoffen für geförderte Anlagen mit Standort in Deutschland55
 A.3 Ermittlung vermiedener Treibhausgasemissionen für geförderte Anlagen
 mit Standort im Ausland ..57
A.4 Bewertung externer Kosten durch Emission von Treibhausgasen und Luftschatstoffen ... 59
A.5 Referenzanlagen .. 61
A.6 Energiepreise ... 67
A.7 Ermittlung von Bruttobeschäftigungsseffekten in Deutschland 68
Abbildungsverzeichnis

Abbildung 1: Von der KfW in Deutschland geförderte elektrische Leistung nach Technologien. ..16

Abbildung 2: Struktur des Primärenergieverbrauchs, der Bruttostromerzeugung sowie des Endenergieverbrauchs zur Wärmebereitstellung in Deutschland.17

Abbildung 5: Vergleich der jährlich vermiedenen externen Kosten der Förderjahrgänge 2015 und 2016 (ohne geförderte Anlagen im Ausland).35

Abbildung 6: Durch die 2015 und 2016 getätigten Investitionen in KfW-geförderte Anlagen ausgelöste Beschäftigung in Deutschland. ..43

Abbildung 9: Der Wirkungspfadansatz zur Berechnung externer Umweltkosten.59
Tabellenverzeichnis

Tabelle 1: Übersicht über die KfW-Förderprogramme im Bereich Erneuerbare Energien im Betrachtungszeitraum 2015 und 2016. ... 3

Tabelle 2: Darlehenszusagen, Darlehensvolumen und ausgelöstes Investitionsvolumen für Erneuerbare Energien nach Kreditprogramm für das Förderjahr 2015. ... 4

Tabelle 3: Darlehenszusagen, Darlehensvolumen und ausgelöstes Investitionsvolumen für Erneuerbare Energien nach Kreditprogramm für das Förderjahr 2016. ... 5

Tabelle 4: Mittelwerte der spezifischen Investitionskosten für die plausiblen Datensätze (eigene Berechnungen). ... 6

Tabelle 5: Volumen der durch KfW-Kreditprogramme 2015 in Deutschland unterstützten Investitionen in Erneuerbare Energien nach Verwendungszweck. 7

Tabelle 6: Volumen der durch KfW-Kreditprogramme 2016 in Deutschland unterstützten Investitionen in Erneuerbare Energien nach Verwendungszweck. 8

Tabelle 7: Im Rahmen der KfW-Programme in Deutschland geförderte Investitionen in Erneuerbare Energien im Vergleich zu den Gesamtinvestitionen in Erneuerbare Energien in Deutschland für das Förderjahr 2015. 9

Tabelle 8: Im Rahmen der KfW-Programme in Deutschland geförderte Investitionen in Erneuerbare Energien im Vergleich zu den Gesamtinvestitionen in Erneuerbare Energien in Deutschland für das Förderjahr 2016. 10

Tabelle 9: In Deutschland geförderte elektrische und thermische Leistung der KfW-Programme im Förderjahrgang 2015 im Vergleich zu den 2015 insgesamt in Deutschland zugebauten Leistungen. .. 12

Tabelle 10: In Deutschland geförderte elektrische und thermische Leistung der KfW-Programme im Förderjahrgang 2016 im Vergleich zu den 2016 insgesamt in Deutschland zugebauten Leistungen. .. 13

Tabelle 11: 2015 durch KfW-Kreditprogramme in Deutschland geförderte elektrische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm. ... 14

Tabelle 12: 2015 durch KfW-Kreditprogramme in Deutschland geförderte thermische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm. ... 14

Tabelle 13: 2016 durch KfW-Kreditprogramme in Deutschland geförderte elektrische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm. ... 14

Tabelle 14: 2016 durch KfW-Kreditprogramme in Deutschland geförderte thermische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm. ... 15
Tabelle 15: Abschätzung der jährlichen Stromerzeugung der 2015 und 2016 durch KfW-Kreditprogramme in Deutschland geförderten Anlagen im Bereich der Erneuerbaren Energien nach Förderprogramm

Tabelle 16: Abschätzung der jährlich bereitgestellten Endenergie Wärme der 2015 und 2016 durch KfW-Kreditprogramme in Deutschland geförderten Anlagen im Bereich der Erneuerbaren Energien nach Förderprogramm

Tabelle 17: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach KfW-Förderprogrammen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland)

Tabelle 18: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach KfW-Förderprogrammen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland)

Tabelle 19: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach Technologien für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland)

Tabelle 20: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach Technologien für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland)

Tabelle 21: Vermiedene jährliche Energieimporte und Kosten für fossile Brennstoffe für den Förderjahrgang 2015

Tabelle 23: Vermiedene jährliche Kosten für importierte fossile Brennstoffe nach Förderprogramm für den Förderjahrgang 2015

Tabelle 24: Vermiedene jährliche Kosten für importierte fossile Brennstoffe nach Förderprogramm für den Förderjahrgang 2016

Tabelle 25: Vermiedene Treibhausgasemissionen pro Jahr nach Kreditprogrammen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland)

Tabelle 26: Vermiedene Treibhausgasemissionen pro Jahr nach Kreditprogrammen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland)

Tabelle 27: Vermiedene Treibhausgasemissionen pro Jahr nach Technologiebereichen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland)

Tabelle 28: Vermiedene Treibhausgasemissionen pro Jahr nach Technologiebereichen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland)

Tabelle 29: Jährliche Vermeidung von Luftschadstoffen nach Technologiebereichen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland)

Tabelle 30: Jährliche Vermeidung von Luftschadstoffen nach Förderprogrammen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland)

Tabelle 31: Jährliche Vermeidung von Luftschadstoffen nach Technologiebereichen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland)
Tabelle 33:	Verwendete Wertansätze zur Ermittlung der vermiedenen Schadenskosten...31
Tabelle 34:	Jährlich vermiedene externe Kosten nach Technologiebereichen und Substanzen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland). ...32
Tabelle 35:	Jährlich vermiedene externe Kosten nach Technologiebereichen und Substanzen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland). ...32
Tabelle 36:	Jährlich vermiedene externe Kosten nach Technologiebereichen und Schadenskategorien für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland). ...33
Tabelle 37:	Jährlich vermiedene externe Kosten nach Förderprogrammen und Schadenskategorien für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland). ...33
Tabelle 38:	Jährlich vermiedene externe Kosten nach Förderprogrammen und Schadenskategorien für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland). ...34
Tabelle 39:	Jährlich vermiedene externe Kosten nach Förderprogrammen und Schadenskategorien für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland). ...34
Tabelle 40:	Aus KfW-geförderten Anlagen resultierende im Inland wirksame Nachfrage durch Investitionen...38
Tabelle 41:	Durch im Jahr 2015 KfW-geförderte Investitionen ausgelöste Beschäftigung in Deutschland...39
Tabelle 42:	Durch im Jahr 2016 KfW-geförderte Investitionen ausgelöste Beschäftigung in Deutschland...40
Tabelle 43:	Durch KfW-geförderte Investitionen ausgelöste Beschäftigung in Deutschland nach Förderprogrammen..41
Tabelle 44:	Im Jahr 2015 durch das KfW-Programm Erneuerbare Energien „Standard“ im Ausland gefördertes Investitionsvolumen und elektrische Leistung nach Verwendungszweck und Land...44
Tabelle 45:	Im Jahr 2016 durch das KfW-Programm Erneuerbare Energien „Standard“ im Ausland gefördertes Investitionsvolumen und elektrische Leistung nach Verwendungszweck und Land...45
Tabelle 46:	Vermiedene CO₂-Emissionen für geförderte Anlagen mit Standort im Ausland nach Ländern und Verwendungszweck für das Förderjahr 2015. 46
Tabelle 47:	Vermiedene CO₂-Emissionen für geförderte Anlagen mit Standort im Ausland nach Ländern und Verwendungszweck für das Förderjahr 2016. 47
Tabelle 48: Substitution konventioneller Energieträger durch die Stromerzeugung aus Erneuerbaren Energien - Bezugsjahr 2016..52
Tabelle 49: Primärenergiefaktoren zur Berechnung des Primärenergieverbrauchs für die Bereitstellung von Strom - Bezugsjahr 2016..53
Tabelle 50: Substitution konventioneller Energieträger durch die Wärmeerzeugung mit Erneuerbaren Energien - Bezugsjahr 2016..53
Tabelle 51: Primärenergiefaktoren zur Berechnung des Primärenergieverbrauchs für die Bereitstellung von Wärme – Bezugsjahr 2016..............................54
Tabelle 52: Relatives Treibhauspotenzial von Treibhausgasen (CO₂, CH₄, N₂O) bzw. Versauerungspotenzial (SO₂, NOₓ) von Säurebildnern.................................55
Tabelle 53: Einsparfaktoren zur Berechnung der vermiedenen Treibhausgasemissionen und Luftschadstoffemissionen für die Stromerzeugung aus Erneuerbaren Energien – Bezugsjahr 2016..56
Tabelle 54: Einsparfaktoren zur Berechnung der vermiedenen Treibhausgasemissionen und Luftschadstoffemissionen für die Wärmeerzeugung aus Erneuerbaren Energien – Bezugsjahr 2016..56
Tabelle 55: CO₂-Emissionsfaktor des Strommixes für die betrachteten Länder, Bezugsjahr 2015...58
Tabelle 56: Parameter zur Berechnung der Photovoltaikanlagen bis 100 kWp.64
Tabelle 57: Parameter zur Berechnung der Photovoltaikanlagen von 101 bis 1.000 kWp. ..64
Tabelle 58: Parameter zur Berechnung der Photovoltaikanlagen über 1.000 kWp.64
Tabelle 59: Parameter zur Berechnung der Windenergieanlagen (onshore)64
Tabelle 60: Parameter zur Berechnung der Windenergieanlagen (offshore)..................64
Tabelle 61: Parameter zur Berechnung der Biomasse-Heizkraftwerke.64
Tabelle 62: Parameter zur Berechnung der Biogasanlagen..65
Tabelle 63: Parameter zur Berechnung der Wasserkraftanlagen..................................65
Tabelle 64: Parameter zur Berechnung der solarthermischen Anlagen.65
Tabelle 65: Parameter zur Berechnung der großen Wärmepumpen..............................65
Tabelle 66: Parameter zur Berechnung der Biogasleitungen..65
Tabelle 67: Parameter zur Berechnung der Wärmenetze mit Wärmeinspeisung aus einem Holzheizwerk...65
Tabelle 68: Parameter zur Berechnung der Wärmenetze mit Wärmeinspeisung aus einer Biogasanlage...66
Tabelle 69: Parameter zur Berechnung der Biomasse-Heizwerke (ohne Nahwärmenetz). ..66
Tabelle 70: Parameter zur Berechnung der Biomasse-Heizwerke (mit Nahwärmenetz). ..66
Tabelle 71: Angesetzte Grenzübergangsprise (Importpreise) für fossile Energieträger ...67

Tabelle 72: Übersicht über die angesetzten Energiepreise (Annuitäten) für die betrachteten Förderjahre 2015 und 2016 ...67
Abkürzungsverzeichnis

a Jahr
AGEE-Stat Arbeitsgruppe Erneuerbare Energien - Statistik
BAFA Bundesamt für Wirtschaft und Ausfuhrkontrolle
CH₄ Methan
CO Kohlenmonoxid
CO₂ Kohlendioxid
EE Erneuerbare Energien
EE Premium KfW-Programm Erneuerbare Energien, Programmteil „Premium“
EE Speicher KfW-Programm Erneuerbare Energien, Programmteil „Speicher“
EE Standard KfW-Programm Erneuerbare Energien, Programmteil „Standard“
EEG Gesetz für den Vorrang Erneuerbarer Energien – Erneuerbare-Energien-Gesetz
EJ Exajoule (10¹⁸ Joule)
FJ Förderjahr
GJ Gigajoule (10⁹ Joule)
GW Gigawatt (10⁹ Watt)
GWh Gigawattstunde
h Stunde
HW Heizwerk
HKW Heizkraftwerk
I₀ Investitionsvolumen
IEKP Integriertes Energie- und Klimaprogramm
KfW KfW Bankengruppe
KMU kleine und mittlere Unternehmen
kW Kilowatt (10³ Watt)
kWh Kilowattstunde
kWₑl / MWₑl elektrische Leistung
kWhₚᵢₘₚᵢ Primärenergie
KWK Kraft-Wärme-Kopplung
kWₑ / MWₑ Nennleistung einer Solaranlage unter Standardtestbedingungen
kWₑₜₗ / MWₑₜₗ thermische Leistung
Mio. Millionen
MW Megawatt (10⁶ Watt)
MWh Megawattstunde
N₂O Distickstoffoxid (Lachgas)
NMVOC Non-methane volatile organic compounds (flüchtige organische Verbindungen außer Methan)
NOₓ Stickoxide
PJ Petajoule \((10^{15} \text{ Joule}) \)
PM₉₀ Feinstaub („particulate matter“) mit einem aerodynamischen Partikeldurchmesser kleiner als 10 µm
PV Photovoltaik
SO₂ Schwefeldioxid
t Tonnen
TJ Terajoule \((10^{12} \text{ Joule}) \)
TWh Terrawattstunde
UBA Umweltbundesamt

Hinweis: In den Tabellen des Berichts kann es zu scheinbaren Abweichungen von Summen, Prozentanteilen u.ä. kommen, da diese mit genauen Werten berechnet wurden, während Einzelwerte nur gerundet dargestellt werden.
Zusammenfassung für politische Entscheidungsträger

In den Jahren 2015 und 2016 setzte sich der Ausbau der Erneuerbaren Energien (EE) in Deutschland weiter fort (vgl. [1]): Im Jahr 2015 stieg der EE-Anteil am deutschen Bruttostromverbrauch im Vergleich zu 2014 um 4,2 Prozentpunkte von 27,3 % auf 31,5 %. Im Jahr 2016 wuchs der EE-Anteil um weitere 0,2 Prozentpunkte auf 31,7 %. Inzwischen stammt mittlerweile annähernd jede dritte verbrauchte Kilowattstunde Strom aus erneuerbaren Quellen.

Die auf dem Energiekonzept der Bundesregierung vom 28. September 2010 sowie auf den Beschlüssen des Bundeskabinetts vom Juni 2011 basierende Zielarchitektur für die Energiewende in Deutschland sieht vor, bis 2050 mindestens 60 % des Bruttoendenergieverbrauchs aus erneuerbaren Quellen zu decken, mit einem Anteil von mindestens 80 % bei der Stromversorgung. In Verbindung mit anspruchsvollen Energieeffizienzzzielen soll es dadurch möglich sein, die Treibhausgasemissionen im Vergleich zum Jahr 1990 um 80 bis 95 % zu mindern. Kurzfristig, d.h. bis zum Jahr 2020, sollen mindestens 18 % des Endenergieverbrauchs und mindestens 35 % des Stromverbrauchs aus Erneuerbaren Energien gedeckt werden. Die Treibhausgasemissionen sollen um 40 % gesenkt werden.

Ein wichtiges Element, um die anspruchsvollen EE-Ausbauziele zu erreichen, sind die Förderaktivitäten der KfW Bankengruppe, die zinsgünstige Darlehen – teilweise auch in Verbindung mit Tilgungszuschüssen aus Bundesmitteln – für Investitionen in die Nutzung erneuerbarer Energiequellen zur Verfügung stellt. Um deren Bedeutung und Effektivität in den Förderjahrgängen 2015 und 2016 zu überprüfen, wurden in der vorliegenden Studie die von diesen Förderprogrammen ausgehenden Effekte in den Bereichen Treibhausgasminderung, Einsparung fossiler Energieträger und damit vermiedener Importe an fossilen Energieträgern, Beschäftigungseffekte sowie vermiedene externe Kosten durch die Reduktion von Treibhausgas- und Luftschadstoffemissionen ermittelt. Auch wurden die im Ausland geförderten Anlagen in die Evaluierung einbezogen, für die das ausgelöste Investitionsvolumen, die geförderte Leistung sowie die vermiedenen Treibhausgasemissionen ermittelt wurden.

Die wichtigsten Ergebnisse der Untersuchung sind:

Die Bedeutung der KfW-Programme für den Ausbau der Erneuerbaren Energien zeigt sich vor allem im Strombereich deutlich: 51 % bzw. 44 % der insgesamt in den Jahren 2015 und 2016 in Deutschland zugebauten elektrischen Leistung wurde durch die KfW gefördert (ohne Berücksichtigung von Windenergie auf See). Mit 62 % bzw. 51 % besonders hoch ist dabei der Anteil bei Windenergieanlagen an Land.

Als Folge der Substitution fossiler Energieträger ist mit der Nutzung der im Jahr 2015 und 2016 geförderten EE-Anlagen mit Standort in Deutschland eine jährliche Emissionsvermeidung von insgesamt rund 9,5 Mio. t CO₂-Äquivalenten (davon 8,7 Mio. t CO₂) verbunden. Durch die im selben Zeitraum geförderten Anlagen mit Standort im Ausland werden jährlich weitere 0,3 Mio. t CO₂ vermieden.

52 % der durch Bau und Betrieb der in den Jahren 2015 und 2016 erstellten Anlagen gewonnenen Arbeitsplätze sind in kleinen und mittleren Unternehmen mit weniger als 500 Beschäftigten entstanden.
Abstract for Political Decision Makers

In the years 2015 and 2016 renewable energy sources (RES) continued to increase their share in Germany’s energy provision (cf. [1]): In 2015 the share of RES in electricity consumption saw a sharp rise from 27.3 % (2014) to 31.5 %. In 2016 this share further increased to 31.7 %. Thus every third kilowatt hour consumed in Germany originates from renewable sources.

The targets set for reaching the German Energiewende are based on the German Federal Government’s long-term strategy for future energy supply, according to which at least 60 % of final energy consumption and 80 % of electricity consumption ought to be covered with renewable energies by the year 2050. In combination with challenging energy efficiency targets greenhouse gas emissions are to be cut by 80 to 95 % in relation to the base year 1990. By the year 2020 18 % of final energy consumption and at least 35 % of electricity consumption are to be covered with renewable energy sources. Greenhouse gas emissions ought to be cut by 40 % compared to the year 1990.

The national renewable energy promotional activities of KfW Bankengruppe represent an important building block for reaching the targets for renewable energy use described above. These activities comprise low-interest loans, partly in combination with repayment bonuses financed by the federal government. In order to review their effectiveness and significance within the years 2015 and 2016 the present study investigated the resulting reductions in emissions of greenhouse gases and air pollutants, external costs, fossil fuel consumption and associated fossil fuel imports. Furthermore, impacts on employment were quantified. In addition, plants built abroad were considered, covering investment volume, capacity installed and greenhouse gas emissions avoided.

The most important results at a glance:

- In the years 2015 and 2016 the KfW promotional programmes supported a total investment in the construction of plants for using renewable energies of € 7,400 million and € 7,600 million respectively (of which €1,300 million and €1,100 million in plants abroad). This represents shares of 42.6 % and 40.1 % respectively of the total investment in plants for power and heat production from renewable energy sources in Germany in 2015 and 2016 (without considering offshore wind energy plants).

- The KfW programmes considered are particularly important for renewable electricity production: In terms of electrical power 51 % and 44 % of the renewable plants installed in Germany in the years 2015 and 2016 were financed through KfW programmes (excluding offshore wind energy plants). With 62 % and 51 % respectively the share is remarkably high for onshore wind turbines.
• Promotional activities conducted in 2015 and 2016 reduce German energy imports by approximately € 550 million per annum. This cumulates to € 11,000 million over the plants' lifetime of 20 years.

• The plants built in Germany and financed by KfW in 2015 and 2016 lead to a reduction of approximately 9.5 million tonnes of CO₂ equivalent (of which 8.7 million tonnes CO₂) per annum. The plants with KfW-support built abroad reduce another 0.3 million tonnes of CO₂ annually.

• Avoiding greenhouse gas and air pollutant emissions in Germany reduces external costs by approx. € 960 million a year (for both years considered), 84 % of which refer to climate change effects.

• Manufacturing and construction of the plants built in 2015 and 2016 correspond to approx. 89,000 jobs created or preserved in Germany for one year. A further 2,700 jobs per annum result from the operation and maintenance of the plants for the assumed 20 years of operation. Offshore wind energy turbines, whose building stretches over a longer time period than other projects, contributes further 33,300 jobs during the construction phase and annually 790 jobs for plant operation.

• Small and medium-sized enterprises with less than 500 employees account for approx. 52 % of the jobs generated by the construction and operation of plants built in the years 2015 and 2016.
1 Einführung

Die Zielarchitektur für die Energiewende der Bundesregierung basiert auf dem Energiekonzept der Bundesregierung vom 28. September 2010 sowie auf den Beschlüssen des Bundeskabinetts vom Juni 2011. Bis 2050 sollen mindestens 60 % des Bruttoendenergieverbrauchs aus erneuerbaren Quellen gedeckt werden, mit einem Anteil von mindestens 80 % bei der Stromversorgung. In Verbindung mit anspruchsvollen Energieeffizienzi Zielen soll es dadurch möglich sein, die Treibhausgasemissionen im Vergleich zum Jahr 1990 um 80 bis 95 % zu mindern. Kurzfristig, d.h. bis zum Jahr 2020, sollen mindestens 18 % des Endenergieverbrauchs und mindestens 35 % des Stromverbrauchs aus erneuerbaren Energien gedeckt werden. Bis 2025 soll der Anteil am Bruttoenergieverbrauch 40 bis 45 % erreichen, bis 2035 55 bis 60 %. Die Treibhausgasemissionen sollen bezogen auf das Jahr 1990 bis 2020 um mindestens 40 % gesenkt werden.

Ein wichtiges Element, um die anspruchsvollen EE-Ausbauziele zu erreichen, sind die Förderaktivitäten der KfW Bankengruppe, die zinsgünstige Darlehen – teilweise auch in Verbindung mit Tilgungszuschüssen aus Bundesmitteln – für Investitionen in die Nutzung erneuerbarer Energiequellen zur Verfügung stellt.

Gegenstand der in diesem Bericht dargestellten Arbeiten ist die umfassende Evaluierung der Förderaktivitäten der KfW Bankengruppe im Bereich der Erneuerbaren Energien.
(Strom und Wärme) für die Förderjahrgänge 2015 und 2016. Hierfür werden die durch die geförderten Investitionen ausgelösten Effekte in den Bereichen Einsparung fossiler Energieträger und damit vermiedene Importe an fossilen Energieträgern, vermiedene Emissionen und dadurch vermiedene externe Kosten sowie Beschäftigungseffekte ermittelt. Im Einzelnen werden folgende Wirkungen berechnet:

• Einsparung fossiler Energieträger (jährliche Primärenergieeinsparung nach Energieträgern),

• vermiedene Importe an fossilen Energieträgern (Energiemengen und Kosten),

• Minderung von Treibhausgas- und Luftschadstoffemissionen: jährliche Verminderung von Treibhausgasen (CO₂, CH₄, N₂O sowie das daraus ermittelte CO₂-Equivalent), Säurebildnern (SO₂, NOₓ sowie das daraus ermittelte SO₂-Equivalent), Vorläuferstoffen für bodennahes Ozon (NMVOC) sowie Feinstaub,

• monetäre Bewertung der durch die Minderung von Treibhausgas- und Luftschadstoffemissionen vermiedenen externen Kosten: Verteilung nach Technologien und Schadenskategorien,

• Arbeitsplatzeffekte: Bruttopschäftigungseffekte in Deutschland in den Sektoren Anlagenbau und Betrieb von Anlagen (pro Jahr und über die gesamte Lebensdauer der Anlage). Ausweisung der direkten und indirekten Beschäftigungseffekte sowie der Anteile Beschäftigter in kleinen und mittleren Unternehmen.

Das folgende Kapitel 2 gibt einen Überblick über die geförderten Vorhaben. In Kapitel 3 werden für geförderte Anlagen mit Standort in Deutschland das ausgelöste Investitionsvolumen und die geförderte Leistung ermittelt sowie die damit einhergehenden Wirkungen berechnet.

In Kapitel 4 werden die im Ausland geförderten Anlagen betrachtet. Dabei werden die durch den Bau dieser Anlagen ausgelöste Investitionsvolumen, die geförderte Leistung sowie die vermiedenen Treibhausgasemissionen betrachtet.
2 Überblick über die geförderten Vorhaben

2.1 Förderprogramme

In den betrachteten Jahren 2015 und 2016 förderte die KfW Investitionen in Erneuerbare Energien über die folgenden Programme, deren Fördergegenstände Tabelle 1 zeigt (in Klammern jeweils das in dieser Evaluierung verwendete Kürzel):

- KfW-Programm Erneuerbare Energien, Programmteil „Standard“ (EE Standard),
- KfW-Programm Erneuerbare Energien, Programmteil „Premium“ (EE Premium, Teil des Marktanreizprogramms des Bundes),
- KfW-Programm Erneuerbare Energien, Programmteil „Speicher“ (EE Speicher),
- KfW-Programm Offshore-Windenergie (Offshore).

<table>
<thead>
<tr>
<th>KfW-Programm Erneuerbare Energien</th>
<th>KfW-Programm Offshore-Windenergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmnummer</td>
<td>Standard</td>
</tr>
<tr>
<td>Hier berücksichtigte Fördermaßnahmen</td>
<td>270, 274</td>
</tr>
<tr>
<td>Art der Förderung</td>
<td>Zinsgünstiges Darlehen</td>
</tr>
<tr>
<td>Kreditöhchstbetrag</td>
<td>maximal 50 Mio. € pro Vorhaben</td>
</tr>
<tr>
<td>Anmerkung zur Programmlaufzeit</td>
<td>Programmstart: 01.01.2009</td>
</tr>
</tbody>
</table>

Der Anstieg des insgesamt von der KfW zugesagten Darlehensvolumens von 5,0 Mrd. € im Jahr 2015 auf 5,1 Mrd. € im Jahr 2016 ist auf das gewachsene Darlehensvolumen im Programm EE Standard (+6 %) zurückzuführen, welches Rückgänge in den anderen Programmen mehr als ausgleichen konnte. Das geförderte Investitionsvolumen wuchs im Jahresvergleich von 7,4 auf 7,6 Mrd. €.

<table>
<thead>
<tr>
<th>Förderjahr 2015</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore</th>
<th>Alle Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darlehenszusagen</td>
<td>2.887</td>
<td>1.521</td>
<td>8.796</td>
<td>2</td>
<td>13.206</td>
</tr>
<tr>
<td>Darlehensvolumen (Mio. €)</td>
<td>4.266,4</td>
<td>137,4</td>
<td>131,6</td>
<td>428,0</td>
<td>4.963,3</td>
</tr>
<tr>
<td>Investitionsvolumen (Mio. €)</td>
<td>5.420,8</td>
<td>190,1</td>
<td>185,8</td>
<td>1.648,0</td>
<td>7.444,7</td>
</tr>
<tr>
<td>Mittleres Investitionsvolumen je Darlehen (€)</td>
<td>1.877.657</td>
<td>124.965</td>
<td>21.128</td>
<td>824 Mio.</td>
<td>563.737</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.
1) exkl. Mehrwertsteuer.

Verglichen mit dem Vorjahr sank das mittlere geförderte Investitionsvolumen je Darlehen im Programmteil EE Standard im Jahr 2016 um knapp 4 %. In diesem Programmteil ver-
fügen weiterhin große Vorhaben im Bereich der PV-Freiflächenanlagen und Windkraftanlagen an Land über ein großes Gewicht, während die in der Vergangenheit dominierenden kleinen PV-Dachanlagen an Bedeutung verloren haben.

<table>
<thead>
<tr>
<th>Förderjahr 2016</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore</th>
<th>Alle Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darlehenszusagen</td>
<td>3.138</td>
<td>1.476</td>
<td>6.465</td>
<td>2</td>
<td>11.081</td>
</tr>
<tr>
<td>Darlehensvolumen (Mio. €)</td>
<td>4.515,5(^1)</td>
<td>105,1</td>
<td>104,5</td>
<td>362,5</td>
<td>5.087,6(^2)</td>
</tr>
<tr>
<td>Investitionsvolumen (Mio. €)</td>
<td>5.669,9(^3)</td>
<td>168,0</td>
<td>138,3</td>
<td>1.630,0</td>
<td>7.606,2(^3)</td>
</tr>
<tr>
<td>Mittleres Investitionsvolumen je Darlehen (€)</td>
<td>1.806.860</td>
<td>113.813</td>
<td>21.385</td>
<td>815 Mio.</td>
<td>686.415</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

\(^1\) exkl. Mehrwertsteuer.
\(^2\) Davon Anlagen im Ausland 825,6 Mio. € - vgl. auch Kapitel 4.1.
\(^3\) Davon Anlagen im Ausland 1.112,2 Mio. € - vgl. auch Kapitel 4.1.

Die insgesamt im Jahr 2015 (2016) ausgelösten Investitionen in Höhe von 7,4 Mrd. € (7,6 Mrd. €) wurden zu 72,8 % (74,5 %) über den Programmteil Standard des KfW-Programms Erneuerbare Energien mitfinanziert, in dem rund 5,4 Mrd. € (5,7 Mrd. €) Investitionen zu verzeichnen waren. Mit dem Programm „EE Premium“ wurden rund 190 Mio. € (170 Mio. €), mit „EE Speicher“ ca. 186 Mio. € (140 Mio. €) Investitionen angestoßen, was einem Anteil von 2,6 % (2,2%) bzw. 2,5 % (1,8 %) des gesamten geförderten Investitionsvolumens entspricht. Auf die im Programm „Offshore“ geförderten Anlagen entfielen 22,1 % (21,4 %) der ausgelösten Investitionen.

2.2 Datengrundlage Förderjahrgänge 2015 und 2016

Für die Förderjahrgänge 2015 und 2016 stellte die KfW für jeden Kreditantrag aus den genannten Förderprogrammen folgende Informationen zur Verfügung:

- Verwendungszweck (Technologie, z.B. Solarthermie, Windkraft),
- Darlehensbetrag aufgeschlüsselt auf die einzelnen Programme,
- konsolidiertes Investitionsvolumen nach Förderprogramm,
- Rechtsform des Antragstellers und
- Bundesland, in dem das Investitionsvorhaben angemeldet wurde.

Für die Technologien Photovoltaik, Windkraft, Wasserkraft, Solarthermie, feste Biomasse, Biogas, Tiefe Geothermie und Große Wärmepumpe liegen zusätzlich Angaben zur installierten Leistung, für Wärmenetze und Biogasleitungen die Trassenlänge und für Wärmespeicher das Volumen vor. Alle vorhandenen Anlagendaten der verschiedenen
Technologien wurden hinsichtlich der Plausibilität der angegebenen Leistungen bzw. sonstiger technischer Angaben und Investitionskosten geprüft.

Tabelle 4: Mittelwerte der spezifischen Investitionskosten für die plausiblen Datensätze (eigene Berechnungen).

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Gerundete durchschnittliche spezifische Investitionskosten in €/kWp (Strom) bzw. €/kWth (Wärme) - exkl. MwSt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom</td>
<td></td>
</tr>
<tr>
<td>Biogas (Stromerzeugung)</td>
<td>1.370</td>
</tr>
<tr>
<td>Biomasse Heizkraftwerk</td>
<td>4.150</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>1.070</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>2.490</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>1.630</td>
</tr>
<tr>
<td>Wärme</td>
<td></td>
</tr>
<tr>
<td>Solarthermie</td>
<td>1.140</td>
</tr>
<tr>
<td>Biomasse</td>
<td>510</td>
</tr>
<tr>
<td>Wärmennetze 1)</td>
<td>260 €/Trassenmeter</td>
</tr>
</tbody>
</table>

1) Die spezifischen Investitionskosten können auf Grund sehr unterschiedlicher Netzlängen, des eingesetzten Leitungsmaterials und des Untergrunds stark variieren.

Im Mittel ergeben sich für die einzelnen Förderjahre die in Tabelle 4 aufgeführten spezifischen Investitionskosten für die einzelnen Technologien. Wegen der geringen Anzahl gefördeter Anlagen in den Bereichen tiefe Geothermie, große Wärmepumpe und Windkraft auf See werden aus Datenschutzgründen keine Mittelwerte ausgewiesen.

3 Wirkungen durch geförderte Anlagen in Deutschland

3.1 Investitionsvolumen und geförderte Leistung

3.1.1 Ausgelöstes Investitionsvolumen

Tabelle 5: Volumen der durch KfW-Kreditprogramme 2015 in Deutschland unterstützten Investitionen in Erneuerbare Energien nach Verwendungszweck.

<table>
<thead>
<tr>
<th>Förderjahr 2015 (exkl. MwSt.)</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas</td>
<td>18,7</td>
<td>0,5</td>
<td></td>
<td></td>
<td>18,7</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>2,5</td>
<td>0,1</td>
<td>50,5</td>
<td>26,6</td>
<td>53,1</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>-</td>
<td>-</td>
<td>18,1</td>
<td>9,5</td>
<td>18,1</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>-</td>
<td>-</td>
<td>0,2</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>314,2</td>
<td>7,7</td>
<td>-</td>
<td>92,5</td>
<td>406,7</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,05</td>
<td>0,0</td>
<td>5,0</td>
<td>2,6</td>
<td>5,1</td>
</tr>
<tr>
<td>Wärmennetz</td>
<td>1,3</td>
<td>0,0</td>
<td>109,8</td>
<td>57,8</td>
<td>111,1</td>
</tr>
<tr>
<td>Wärmespeicher</td>
<td>0,04</td>
<td>0,0</td>
<td>6,5</td>
<td>3,4</td>
<td>6,5</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>19,8</td>
<td>0,5</td>
<td>-</td>
<td>-</td>
<td>19,8</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>3.728,2</td>
<td>91,3</td>
<td>-</td>
<td>-</td>
<td>3.728</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.648,0</td>
<td>1.648</td>
</tr>
<tr>
<td>Stromspeicher</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>93,3</td>
<td>93,3</td>
</tr>
<tr>
<td>Summe</td>
<td>4.084,8</td>
<td>100,0</td>
<td>190,1</td>
<td>100,0</td>
<td>6.108</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.
Die geförderten Investitionen in Windkraftanlagen an Land stiegen im Vergleich zu 2015 um 9,5 %. Die Investitionen in Stromspeicher legten von 2015 auf 2016 um 20,6 % zu, nachdem sie im Jahr zuvor um 46 % gestiegen waren. Auf Grund geringer Anlagenzahlen schwanken die Investitionen in tiefe Geothermie, große Wärmepumpen sowie Windkraftanlagen auf See zwischen verschiedenen Jahren stark, so dass ein Vorjahresvergleich meist geringe Aussagekraft besitzt. Die geförderten Investitionen in Solarthermie sanken 2016 wie bereits im Vorjahr um rund die Hälfte, die in Anlagen zur Nutzung fester Biomasse um rund 25 % und die in Wärmespeicher um 17 %. Dagegen stiegen die geförderten Investitionen in Wärmenetze im Vergleich zu 2015 um knapp 7 %. Die Rückgänge im Wärmebereich dürften zu einem großen Teil auf eine verschlechterte Wirtschaftlichkeit im Vergleich zu fossilen Anlagen in Folge des anhaltend niedrigen Ölpreises zurückzuführen sein.

Die geförderten Investitionen in Biogasanlagen verzeichneten nach einer leichten Erholung 2015 im Jahr 2016 mit -83 % wieder einen Einbruch. Das geförderte Investitionsvolumen von Wasserkraftanlagen sank im Vorjahresvergleich um 59 %.

Im Jahr 2015 (2016) wurden in Deutschland insgesamt 14,0 (15,1) Mrd. € in den Ausbau der Erneuerbaren Energien zur Strom- und Wärmebereitstellung investiert (vgl. [1]). Mit den Förderkrediten der KfW wurden 2015 (2016) Investitionen in die Errichtung von Anlagen zur Nutzung Erneuerbarer Energien in Höhe von insgesamt 6,1 (6,5) Mrd. € ange-

Tabelle 7: Im Rahmen der KfW-Programme in Deutschland geförderte Investitionen in Erneuerbare Energien im Vergleich zu den Gesamtinvestitionen in Erneuerbare Energien in Deutschland (vgl. [1]) für das Förderjahr 2015.

<table>
<thead>
<tr>
<th>Förderjahr 2015</th>
<th>KfW-geförderte Investitionen in Mio. €</th>
<th>Gesamtinvestitionen Deutschland in Mio. €</th>
<th>Anteil KfW-Förderung in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse (Strom)</td>
<td>21,0</td>
<td>170</td>
<td>12,4</td>
</tr>
<tr>
<td>Biomasse (Wärme)</td>
<td>50,8</td>
<td>1.270</td>
<td>4,0</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>18,1</td>
<td>1.020<sup>1)</sup></td>
<td>1,8</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>0,2</td>
<td>In Wert für Geothermie enthalten</td>
<td>k.A.</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>406,7</td>
<td>1.620</td>
<td>25,1</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>5,1</td>
<td>800</td>
<td>0,6</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>19,8</td>
<td>60</td>
<td>33,0</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>3.728,2</td>
<td>5.370</td>
<td>69,4</td>
</tr>
<tr>
<td>Wärmenspeicher</td>
<td>111,1</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Wärmespeicher</td>
<td>6,5</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Stromspeicher</td>
<td>93,3</td>
<td>170<sup>2)</sup></td>
<td>54,9</td>
</tr>
<tr>
<td>Summe (ohne Windenergie auf See)<sup>3)</sup></td>
<td>4.460,7</td>
<td>10.480</td>
<td>42,6<sup>4)</sup></td>
</tr>
<tr>
<td>Nachrichtlich: Windenergie auf See</td>
<td>1.648,0</td>
<td>3.680</td>
<td>k.A.<sup>3)</sup></td>
</tr>
</tbody>
</table>

¹⁾ Einschließlich Wärmepumpen.
²⁾ Abschätzung für Solarstromspeicher auf Basis der Angaben in [28].
⁴⁾ Bei Berücksichtigung von Windenergie auf See 43,1 %.
Tabelle 8: Im Rahmen der KfW-Programme in Deutschland geförderte Investitionen in Erneuerbare Energien im Vergleich zu den Gesamtinvestitionen in Erneuerbare Energien in Deutschland (vgl. [1]) für das Förderjahr 2016.

<table>
<thead>
<tr>
<th>Förderjahr 2016</th>
<th>KfW-geförderte Investitionen in Mio. €</th>
<th>Gesamtinvestitionen Deutschland in Mio. €</th>
<th>Anteil KfW-Förderung in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse (Strom)</td>
<td>3,1</td>
<td>260</td>
<td>1,2</td>
</tr>
<tr>
<td>Biomasse (Wärme)</td>
<td>40,1</td>
<td>1.200</td>
<td>3,3</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>1,0</td>
<td>1.190(^1))</td>
<td>0,1</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>2,3</td>
<td>In Wert für Geothermie enthalten</td>
<td>k.A.</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>489,0</td>
<td>1.640</td>
<td>29,8</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>2,6</td>
<td>690</td>
<td>0,4</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>8,2</td>
<td>30</td>
<td>27,2</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>4.081,5</td>
<td>6.810</td>
<td>59,9</td>
</tr>
<tr>
<td>Wärmespeicher</td>
<td>118,4</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Wärmespeicher</td>
<td>5,4</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Stromspeicher</td>
<td>66,7(^2))</td>
<td>200(^3))</td>
<td>33,4</td>
</tr>
<tr>
<td>Summe (ohne Windenergie auf See und große Batteriespeicher)(^4))</td>
<td>4.818,2</td>
<td>12.020</td>
<td>40,1(^5))</td>
</tr>
<tr>
<td>Nachrichtlich: Windenergie auf See</td>
<td>1.630,0</td>
<td>3.260</td>
<td>k.A.(^6))</td>
</tr>
<tr>
<td>Nachrichtlich: Große Batteriespeicher (^3)</td>
<td>45,8</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

\(^1\) Einschließlich Wärmepumpen.
\(^2\) Die im Rahmen des Programmenteils EE Standard geförderten Investitionen in große Batteriespeicher werden nachrichtlich ausgewiesen, da diese nicht ausschließlich Strom aus erneuerbaren Quellen nutzen.
\(^3\) Abschätzung für Solarstromspeicher auf Basis der Angaben in [28].
\(^5\) Bei Berücksichtigung von Windenergie auf See 42,2 %.

Im Vergleich zum Vorjahr sank im Förderjahrgang 2016 der Anteil KfW-gefördeter Investitionen – ohne Berücksichtigung der Windenergie auf See – um 2,5 Prozentpunkte. Dieser Rückgang geht insbesondere auf den von 69,4 % auf 59,9 % gesunkenen Anteil bei den Windkraftanlagen an Land zurück: Die Investitionen in diesem Bereich stiegen auf Bundesebene stärker als das Volumen KfW-gefördelter Investitionen. Bei Stromspeichern\(^1\) ging der Anteil von 54,9 % auf 33,4 %, bei Anlagen zur Stromerzeugung aus Biomasse von 12,4 % auf 1,2 % und bei Wasserkraftanlagen von 33,0 % auf 27,2 % zurück. Im Bereich der Photovoltaik konnte der KfW-Anteil im Vorjahresvergleich von 25,1 % auf 29,8 % zulegen. Bei den übrigen Verwendungszwecken bewegten sich die KfW-

3.1.2 Geförderte Leistung

Die bereits im Hinblick auf die Investitionen beobachteten Anteile der KfW-Förderung im Bereich Erneuerbare Energien (vgl. Tabelle 7, Tabelle 8) finden sich in etwa auch beim Blick auf die geförderten Anlagenleistungen im Vergleich zur neu installierten Leistung in Deutschland (vgl. Tabelle 9, Tabelle 10).

Im Jahr 2015 (2016) wurden rechnerisch 51 % (44 %) der insgesamt in Deutschland zugestellten elektrischen Leistung (ohne Windenergie auf See) über die KfW gefördert. Der Rückgang um 7 Prozentpunkte ist vor allem auf den gesunkenen Anteil bei den geförderten Windkraftanlagen an Land zurückzuführen. In beiden betrachteten Förderjahren wird mit 62 % bzw. 51 % im Bereich der Onshore-Windenergie der höchste KfW-Förderanteil erreicht. Bei der Interpretation der ermittelten Anteile ist zu berücksichtigen, dass beim Bau von Windkraftanlagen ein zeitlicher Verzug zwischen Förderzusage und Inbetriebnahme nicht ungewöhnlich ist, wodurch die zeitliche Zuordnung unpräzise werden kann (im Durchschnitt der Jahre 2010 bis 2016 betrug der KfW-Förderanteil bei Windenergie an Land 65 %). Bei Photovoltaikanlagen wurde 2015 (2016) ein KfW-Anteil von 24 % (29 %) an der installierten elektrischen Leistung erreicht. Bei Wasserkraft belief sich der KfW-Förderanteil auf 85 % (20 %), bei Anlagen zur Stromerzeugung aus fester Biomasse auf 46 % (0 %) und bei Biogasanlagen auf 13 % (0,5 %).
Tabelle 9: In Deutschland geförderte elektrische und thermische Leistung der KfW-Programme im Förderjahrgang 2015 im Vergleich zu den 2015 insgesamt in Deutschland zugebauten Leistungen (vgl. [1], [3], [4]).

<table>
<thead>
<tr>
<th>Förderjahr 2015</th>
<th>Verwendungszweck</th>
<th>Geförderte Leistung in MWel bzw. MWth</th>
<th>In Deutschland zugebaute Leistung in MWel bzw. MWth</th>
<th>Anteil der KfW-geförderten Anlagen am Zubau in Deutschland in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom</td>
<td>Windenergie an Land</td>
<td>2.285,8</td>
<td>3.700</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Photovoltaik</td>
<td>354,9</td>
<td>1.450</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Wasserkraft</td>
<td>8,0</td>
<td>9,4</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Biogas(^1)</td>
<td>13,7</td>
<td>104</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Feste Biomasse</td>
<td>0,6</td>
<td>1,2</td>
<td>46</td>
</tr>
<tr>
<td>Summe (ohne Winden. auf See)(^2)</td>
<td>2.663,0</td>
<td>5.265</td>
<td>51(^3)</td>
<td></td>
</tr>
<tr>
<td>Nachr.: Windenergie auf See</td>
<td>402</td>
<td>1.189</td>
<td>k.A.(^2)</td>
<td></td>
</tr>
<tr>
<td>Wärme(^4)</td>
<td>Solarthermie(^5)</td>
<td>4,4</td>
<td>564</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>Feste Biomasse</td>
<td>99,9</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Geothermie (tief)</td>
<td>16,0</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Große Wärmepumpe</td>
<td>0,5</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Summe</td>
<td>120,8</td>
<td>k.A.</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>Wärmenetze (Trassenlänge)</td>
<td>429,1 km</td>
<td>k.A.</td>
<td>k.A.</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: Nicht in der Datenbank vorliegende elektrische bzw. thermische Leistungen wurden anhand der spezifischen Investitionskosten der vollständigen Datensätze hochgerechnet.

1) Stromerzeugung.
3) Bei Berücksichtigung von Windenergie auf See 47 %.
4) Ohne den thermischen Leistungsanteil der KWK-Anlagen aus dem Strombereich.
5) Der geringe Anteil der von der KfW geförderten solarthermischen Anlagen am Zubau in Deutschland ist dadurch zu erklären, dass solarthermische Anlagen zu über 95 % kleiner als 20 m² bzw. 14 kW sind und über den BAFA-Teil des Marktanreizprogramms des Bundes mit Investitionskostenzuschüssen gefördert werden.

Im Wärmesektor bzw. bei der Förderung von Wärmenetzen und Biogasleitungen wird die Einordnung der KfW-Förderung dadurch erschwert, dass außer zur Solarthermie keine Angaben zur installierten Leistung bzw. (Trassen-)Länge auf Bundesebene verfügbar sind. Als Größenordnung im Bereich der Wärmeerzeugung aus Biomasse kann jedoch der Anteil der Investitionen aus Tabelle 7 und Tabelle 8 näherungsweise herangezogen werden. Bezogen auf die installierte Leistung zur Wärmebereitstellung aus Biomasse ist allerdings anzunehmen, dass der KfW-Anteil leicht höher liegt. Dies ist darauf zurückzuführen, dass von der KfW große Biomasseanlagen gefördert werden, die geringere spezifische Kosten aufweisen und damit leistungsbezogen einen größeren Marktanteil einnehmen.
Tabelle 11 bis Tabelle 14 zeigen für die Förderjahrgänge 2015 und 2016 die Aufteilung der geförderten elektrischen bzw. thermischen Leistung auf die einzelnen Förderprogramme der KfW.

Tabelle 10: in Deutschland geförderte elektrische und thermische Leistung der KfW-Programme im Förderjahrgang 2016 im Vergleich zu den 2016 insgesamt in Deutschland zugebauten Leistungen (vgl. [1], [5], [6]).

<table>
<thead>
<tr>
<th>Förderjahr 2016</th>
<th>Verwendungs-zweck</th>
<th>Geförderte Leistung in MWel bzw. MWth</th>
<th>In Deutschland zugebaute Leistung in MWel bzw. MWth</th>
<th>Anteil der KfW-geforderten Anlagen am Zubau in Deutschland in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom</td>
<td>Windenergie an Land</td>
<td>2.368,8</td>
<td>4.642</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Photovoltaik</td>
<td>442,8</td>
<td>1.534</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Wasserkraft</td>
<td>1,7</td>
<td>8,7</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Biogas¹)</td>
<td>0,9</td>
<td>199,6</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Feste Biomasse</td>
<td>-</td>
<td>9,6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Summe (ohne Windenergie auf See)</td>
<td>2.814,2</td>
<td>6.394</td>
<td>44³)</td>
</tr>
<tr>
<td></td>
<td>Nachr.: Windenergie auf See</td>
<td>396,0</td>
<td>695</td>
<td>k.A.²)</td>
</tr>
<tr>
<td>Wärme</td>
<td>Solarthermie⁴)</td>
<td>2,9</td>
<td>521</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>Feste Biomasse</td>
<td>86,1</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Geothermie (tief)</td>
<td>4,0</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Große Wärme- pumpen</td>
<td>6,3</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>99,3</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Wärmennetze (Trassenlänge)</td>
<td>449,2 km</td>
<td>k.A.</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>Biogasleitungen (Länge)</td>
<td>3,5 km</td>
<td>k.A.</td>
<td>k.A.</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: Nicht in der Datenbank vorliegende elektrische bzw. thermische Leistungen wurden anhand der spezifischen Investitionskosten der vollständigen Datensätze hochgerechnet.

¹) Stromerzeugung.
³) Bei Berücksichtigung von Windenergie auf See 45 %.
⁴) Der geringe Anteil der von der KfW geförderten solarthermischen Anlagen am Zubau in Deutschland ist dadurch zu erklären, dass solarthermische Anlagen zu über 95 % kleiner als 20 m² bzw. 14 kW sind und über den BAFA-Teil des Marktanreizprogramms des Bundes mit Investitionskostenzuschüssen gefördert werden.
Tabelle 11: 2015 durch KfW-Kreditprogramme in Deutschland geförderte elektrische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm.

<table>
<thead>
<tr>
<th>Förderjahr 2015</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>2.285,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.285,8</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>402,0</td>
<td>402,0</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>294,9</td>
<td>-</td>
<td>60,1</td>
<td>-</td>
<td>354,9</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>8,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,0</td>
</tr>
<tr>
<td>Biogas</td>
<td>13,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13,7</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>0,5</td>
<td>0,05</td>
<td>-</td>
<td>-</td>
<td>0,6</td>
</tr>
<tr>
<td>Summe</td>
<td>2.602,9</td>
<td>0,05</td>
<td>60,1</td>
<td>402,0</td>
<td>3.065,0</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

1) Stromerzeugung.

Tabelle 12: 2015 durch KfW-Kreditprogramme in Deutschland geförderte thermische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm.

<table>
<thead>
<tr>
<th>Förderjahr 2015</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarthermie</td>
<td>0,06</td>
<td>4,4</td>
<td>4,4</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>0,9</td>
<td>98,9</td>
<td>99,9</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>-</td>
<td>16,0</td>
<td>16,0</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>-</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Summe</td>
<td>1,0</td>
<td>119,8</td>
<td>120,8</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Tabelle 13: 2016 durch KfW-Kreditprogramme in Deutschland geförderte elektrische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm.

<table>
<thead>
<tr>
<th>Förderjahr 2016</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>2.368,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.368,8</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>396,0</td>
<td>396,0</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>397,8</td>
<td>-</td>
<td>45,0</td>
<td>-</td>
<td>442,8</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>1,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,7</td>
</tr>
<tr>
<td>Biogas</td>
<td>0,9</td>
<td>0,03</td>
<td>-</td>
<td>-</td>
<td>0,9</td>
</tr>
<tr>
<td>Summe</td>
<td>2.769,2</td>
<td>0,03</td>
<td>45,0</td>
<td>396,0</td>
<td>3.210,2</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

1) Stromerzeugung.
Tabelle 14: 2016 durch KfW-Kreditprogramme in Deutschland geförderte thermische Leistung im Bereich der Erneuerbaren Energien, nach Verwendungszweck und Förderprogramm.

<table>
<thead>
<tr>
<th>Förderjahr 2016</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarthermie</td>
<td>0,05</td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>2,4</td>
<td>83,7</td>
<td>86,1</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>-</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>-</td>
<td>6,3</td>
<td>6,3</td>
</tr>
<tr>
<td>Summe</td>
<td>2,5</td>
<td>96,8</td>
<td>99,3</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

<table>
<thead>
<tr>
<th>TWh</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Förderjahr 2015</td>
<td>5,2</td>
<td>-</td>
<td>0,05</td>
<td>1,5</td>
<td>6,8</td>
</tr>
<tr>
<td>Förderjahr 2016</td>
<td>5,4</td>
<td>-</td>
<td>0,04</td>
<td>1,5</td>
<td>6,9</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

<table>
<thead>
<tr>
<th>TWh</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Förderjahr 2015</td>
<td>0,03</td>
<td>0,5</td>
<td>0,6</td>
</tr>
<tr>
<td>Förderjahr 2016</td>
<td>0,01</td>
<td>0,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

3.1.3 Vergleich der Förderjahrgänge 2015 und 2016

Abbildung 1 zeigt die Entwicklung der von der KfW in Deutschland geförderten elektrischen Leistung für die Jahre 2015 und 2016. Die leichte Zunahme von insgesamt 3,1 GW 2015 auf 3,2 GW 2016 spiegelt direkt die in diesem Zeitraum zu verzeichnende Zunahme
Das geförderte Investitionsvolumens in Anlagen zur Stromerzeugung wider. Sowohl für Photovoltaikanlagen als auch für Windenergieanlagen an Land wuchs die geförderte installierte Leistung, während für Windkraftanlagen auf See ein leichter Rückgang zu verzeichnen war. Die sonstigen geförderten EE-Anlagen zur Stromerzeugung (Biogas, Wasserkraft und feste Biomasse) spielen mengenmäßig eine zu vernachlässigende Rolle.

* Nach vollständiger Inbetriebnahme der geförderten Anlagen

Abbildung 1: Von der KfW in Deutschland geförderte elektrische Leistung nach Technologien.
3.2 Einsparung fossiler Energieträger

3.2.1 Einsparung fossiler Energieträger und vermiedene Energieimporte

Der Energiebedarf Deutschlands wird trotz des gestiegenen Anteils erneuerbarer Energien nach wie vor zu einem großen Teil aus fossilen Rohstoffen gedeckt. Der Anteil der fossilen Energieträger am Primärenergieverbrauch liegt im Jahr 2016 weiterhin nahezu unverändert bei rund 80 %, weiterhin wird 7 % des Primärenergieverbrauchs durch Kernenergie gedeckt. Der Anteil der Erneuerbaren Energien am Primärenergieverbrauch beträgt knapp 13 % (vgl. Abbildung 2).

Abbildung 2: Struktur des Primärenergieverbrauchs, der Bruttostromerzeugung\(^2\) sowie des Endenergieverbrauchs zur Wärmebereitstellung\(^3\) in Deutschland [7, 8].

Mit Blick auf die Stromerzeugung war in den vergangenen Jahren ein deutliches Wachstum der erneuerbaren Energien zu verzeichnen, die mittlerweile fast 30 % zur Bruttostromerzeugung beitragen. Der Kernenergieanteil ist weiterhin rückläufig, der Anteil der fossilen Energien beträgt weiterhin rund 54 %. Im Bereich der Wärmebereitstellung beträgt der direkte Anteil der fossilen Energien gut 70 % des Endenergieverbrauchs, wobei zu berücksichtigen ist, dass Fernwärme und Strom zu einem großen Teil auch aus fossilen Energieträgern stammen. Erneuerbare Energien standen im Jahr 2015 für knapp 11 % des Endenergieverbrauchs zur Wärmebereitstellung.

\(^2\) Der in der Einleitung genannte Anteil der Erneuerbaren Energien von 31,7 % bezieht sich auf den Stromverbrauch. Die in Abbildung 2 angeführten Zahlen beziehen sich auf die Stromerzeugung. Da die Stromerzeugung in Deutschland leicht höher als der Stromverbrauch liegt, ergibt sich ein geringerer EE-Anteil beim Bezug auf die Stromerzeugung.

\(^3\) Zum Zeitpunkt der Berichterstellung lagen zum Endenergieverbrauch für die Wärmebereitstellung nach Energieträgern keine aktuelleren Angaben als für das Jahr 2015 vor.

Die jährliche Einsparung fossiler Energieträger nach Programmen ist für die beiden Förderjahrgänge in Tabelle 15 und 16 dargestellt.

Tabelle 17: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach KfW-Förderprogrammen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>GWh/a</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Braunkohle</th>
<th>Mineralöl</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>7.696</td>
<td>3.736</td>
<td>2</td>
<td>17</td>
<td>11.450</td>
<td>71,9%</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>69</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>103</td>
<td>0,6%</td>
</tr>
<tr>
<td>EE Premium</td>
<td>263</td>
<td>508</td>
<td>92</td>
<td>93</td>
<td>956</td>
<td>6,0%</td>
</tr>
<tr>
<td>Offshore</td>
<td>2.305</td>
<td>1.116</td>
<td>0</td>
<td>0</td>
<td>3.420</td>
<td>21,5%</td>
</tr>
<tr>
<td>Summe</td>
<td>10.332</td>
<td>5.394</td>
<td>94</td>
<td>110</td>
<td>15.930</td>
<td>100,0%</td>
</tr>
<tr>
<td>Anteil</td>
<td>64,9%</td>
<td>33,9%</td>
<td>0,6%</td>
<td>0,7%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Tabelle 18: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach KfW-Förderprogrammen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>GWh/a</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Braunkohle</th>
<th>Mineralöl</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>7.919</td>
<td>3.849</td>
<td>1</td>
<td>1</td>
<td>11.770</td>
<td>73,5%</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>52</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>0,5%</td>
</tr>
<tr>
<td>EE Premium</td>
<td>193</td>
<td>409</td>
<td>67</td>
<td>124</td>
<td>793</td>
<td>5,0%</td>
</tr>
<tr>
<td>Offshore</td>
<td>2.270</td>
<td>1.099</td>
<td>0</td>
<td>0</td>
<td>3.369</td>
<td>21,0%</td>
</tr>
<tr>
<td>Summe</td>
<td>10.433</td>
<td>5.383</td>
<td>68</td>
<td>126</td>
<td>16.011</td>
<td>100,0%</td>
</tr>
<tr>
<td>Anteil</td>
<td>65,2%</td>
<td>33,6%</td>
<td>0,4%</td>
<td>0,8%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Tabelle 19: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach Technologien für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>GWh/a</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Braunkohle</th>
<th>Mineralöl</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>7.148</td>
<td>3.460</td>
<td>0</td>
<td>0</td>
<td>10.608</td>
<td>66,6%</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>2.305</td>
<td>1.116</td>
<td>0</td>
<td>0</td>
<td>3.420</td>
<td>21,5%</td>
</tr>
</tbody>
</table>
| Biogas (Strom)
| | 117 | 57 | 0 | 17 | 191 | 1,2% |
| Photovoltaik | 361 | 183 | 0 | 0 | 544 | 3,4% |
| Stromspeicher (einschl. PV)
| | 69 | 35 | 0 | 0 | 103 | 0,6% |
| Biomasse HW, HKW | 185 | 310 | 64 | 0 | 559 | 3,5% |
| Biogasleitungen | 0 | 0 | 0 | 0 | 0 | 0,0% |
| Wasserkraft | 62 | 26 | 0 | 0 | 88 | 0,6% |
| Wärmennetze | 26 | 105 | 8 | 92 | 232 | 1,5% |
| Solarthermie | 0,1 | 0,7 | 0,0 | 0,6 | 1,4 | 0,01% |
| Geothermie (tief) | 59 | 101 | 21 | 0 | 182 | 1,1% |
| Große Wärmepumpen | 0,0 | 0,3 | 0,0 | 0,3 | 1 | 0,0% |
| Summe | 10.332 | 5.394 | 94 | 110 | 15.930| 100,0% |
| Anteil | 64,9% | 33,9% | 0,6% | 0,7% | 100,0%| |

Abweichungen in Summen durch Rundung möglich.

1) Einschließlich Einsparung fossiler Energieträger durch Wärmenutzung.
2) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

Tabelle 20: Jährliche Einsparung fossiler Energieträger (Primärenergie) durch die Nutzung Erneuerbarer Energien nach Technologien für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Technologie</th>
<th>GWh/a</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Braunkohle</th>
<th>Mineralöl</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>7.407</td>
<td>3.585</td>
<td>0</td>
<td>0</td>
<td>10.993</td>
<td>68,7%</td>
<td></td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>2.270</td>
<td>1.099</td>
<td>0</td>
<td>0</td>
<td>3.369</td>
<td>21,0%</td>
<td></td>
</tr>
<tr>
<td>Biogas (Strom)¹</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>0,1%</td>
<td></td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>486</td>
<td>247</td>
<td>0</td>
<td>0</td>
<td>734</td>
<td>4,6%</td>
<td></td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV²)</td>
<td>52</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>0,5%</td>
<td></td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>149</td>
<td>254</td>
<td>53</td>
<td>0</td>
<td>456</td>
<td>2,8%</td>
<td></td>
</tr>
<tr>
<td>Biogasleitungen</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0,0%</td>
<td></td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0,1%</td>
<td></td>
</tr>
<tr>
<td>Wärmennetze</td>
<td>34</td>
<td>136</td>
<td>11</td>
<td>120</td>
<td>300</td>
<td>1,9%</td>
<td></td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>0,01%</td>
<td></td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>12</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>38</td>
<td>0,2%</td>
<td></td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>0,1%</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>10.433</td>
<td>5.383</td>
<td>68</td>
<td>126</td>
<td>16.011</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

| Anteil | 65,2% | 33,6% | 0,4% | 0,8% | 100,0% |

Abweichungen in Summen durch Rundung möglich.

¹) siehe Tabelle 19

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>36 1.000 t/a</td>
<td>0%</td>
<td>0 1.000 t/a</td>
<td>k.A.</td>
<td>-</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>1.378 1.000 t/a</td>
<td>100%</td>
<td>1.378 1.000 t/a</td>
<td>10.818 €/GWh</td>
<td>112</td>
</tr>
<tr>
<td>Erdgas</td>
<td>552 Mio. m³/a</td>
<td>100%</td>
<td>552 Mio. m³/a</td>
<td>28.553 €/GWh</td>
<td>154</td>
</tr>
<tr>
<td>Mineralöl</td>
<td>11 Mio. l/a</td>
<td>100%</td>
<td>11 Mio. l/a</td>
<td>50.074 €/GWh</td>
<td>6</td>
</tr>
</tbody>
</table>

| Summe | 271 |

Abweichungen in Summen durch Rundung möglich.

¹) Es wird unterstellt, dass in Deutschland geförderte Energie nicht verdrängt wird, sondern dass die Einsparung durch den Einsatz Erneuerbarer Energien vollständig den Importen zuzurechnen ist. Da keine Braunkohle nach Deutschland importiert wird, wird in diesem Fall die Importquote zu Null gesetzt. Die tatsächlichen Importquoten 2015 betragen (nachrichtlich): Braunkohle -3 % (d.h. Export); Steinkohle 88 %, Erdgas 88 %, Mineralöl 99 % [7].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>25 1.000 t/a</td>
<td>0%</td>
<td>0 1.000 t/a</td>
<td>k.A.</td>
<td>-</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>1.391 1.000 t/a</td>
<td>100%</td>
<td>1.391 1.000 t/a</td>
<td>11.093 €/GWh</td>
<td>116</td>
</tr>
<tr>
<td>Erdgas</td>
<td>551 Mio. m³/a</td>
<td>100%</td>
<td>551 Mio. m³/a</td>
<td>29.666 €/GWh</td>
<td>160</td>
</tr>
<tr>
<td>Mineralöl</td>
<td>12 Mio. l/a</td>
<td>100%</td>
<td>12 Mio. l/a</td>
<td>52.233 €/GWh</td>
<td>7</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>282</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) ²) siehe Tabelle 21

3 Wirkungen durch geförderte Anlagen in Deutschland

<table>
<thead>
<tr>
<th>Mio. €2014/a</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Mineralöl</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>83</td>
<td>107</td>
<td>1</td>
<td>191</td>
<td>70,3%</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0,6%</td>
</tr>
<tr>
<td>EE Premium</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>22</td>
<td>8,1%</td>
</tr>
<tr>
<td>Offshore</td>
<td>25</td>
<td>32</td>
<td>0</td>
<td>57</td>
<td>20,9%</td>
</tr>
<tr>
<td>Summe</td>
<td>112</td>
<td>154</td>
<td>6</td>
<td>271</td>
<td>100,0%</td>
</tr>
<tr>
<td>Anteil</td>
<td>41,2%</td>
<td>56,8%</td>
<td>2,0%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

<table>
<thead>
<tr>
<th>Mio. €2014/a</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Mineralöl</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>88</td>
<td>114</td>
<td>0</td>
<td>202</td>
<td>71,7%</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0,5%</td>
</tr>
<tr>
<td>EE Premium</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>21</td>
<td>7,4%</td>
</tr>
<tr>
<td>Offshore</td>
<td>25</td>
<td>33</td>
<td>0</td>
<td>58</td>
<td>20,5%</td>
</tr>
<tr>
<td>Summe</td>
<td>116</td>
<td>160</td>
<td>7</td>
<td>282</td>
<td>100,0%</td>
</tr>
<tr>
<td>Anteil</td>
<td>41,0%</td>
<td>56,6%</td>
<td>2,3%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

3.2.2 Vergleich der Förderjahrgänge 2015 und 2016

Zur Einordnung der Wirkungen wird die Einsparung fossiler Energieträger für die beiden betrachteten Förderjahre gegenübergestellt. Abbildung 3 zeigt die Einsparung nach fossilen Energieträgern gruppiert nach geförderten Technologien und Jahren.

3.3 Vermiedene Emissionen und vermiedene externe Kosten

Die Bilanzierung der Emissionsvermeidung folgt der Methodik zur Einsparung fossiler Energieträger. Unterschiede zu den eingesparten fossilen Energieträgern ergeben sich daraus, dass sich die CO$_2$-Faktoren und Schadstoffemissionen der substituierten Energieträger deutlich voneinander unterscheiden. So entsteht beispielsweise bei der Verbrennung von Kohle etwa doppelt so viel CO$_2$ wie bei der Verbrennung von Erdgas, weil bei Erdgas entsprechend der chemischen Zusammensetzung der enthaltene Wasserstoff einen hohen Anteil am Heizwert hat. CO$_2$-Emissionen sind auch mit der Nutzung von Bioenergien verbunden, allerdings kann davon ausgegangen werden, dass diese Prozesse insgesamt weitgehend CO$_2$-neutral sind, weil das freigesetzte CO$_2$ zuvor während des Pflanzenwachstums aus der Atmosphäre aufgenommen wurde.

Nachfolgend werden die Treibhausgase CO$_2$ (Kohlendioxid), CH$_4$ (Methan) und N$_2$O (Lachgas) sowie die Luftschadstoffe SO$_2$ (Schwefeldioxid), NO$_x$ (Stickoxide), Feinstaub sowie NMVOC (Non-methane volatile organic compounds) betrachtet. Diese stellen die schädlichsten und quantitativ wichtigsten Stoffe dar, weshalb für sie auch die Datenverfügbarkeit am besten ist. Die detaillierte Methodik zur Ermittlung der vermiedenen Emissionen von Treibhausgasen sowie Luftschadstoffen ist in Anhang A.2 dargestellt.

3.3.1 Vermiedene Treibhausgasemissionen

Als Folge der Substitution fossiler Energieträger ist durch die Nutzung der im Jahr 2015 und 2016 geförderten Erneuerbaren Energien von einer jährlichen CO$_2$-Vermeidung in Höhe von 4,3 bzw. 4,4 Mio. t auszugehen. Werden die treibhausrelevanten Gase Methan
und Lachgas einbezogen, erhöht sich die Einsparung auf 4,7 bzw. 4,8 Mio. t CO₂-
Äquivalente pro Jahr (vgl. Tabelle 25 und Tabelle 26).

Tabelle 25: Vermiedene Treibhausgasemissionen pro Jahr nach Kreditprogrammen für den
Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Mio. t/a</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore-Windenergie</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>3,21</td>
<td>0,13</td>
<td>0,03</td>
<td>0,96</td>
<td>4,33</td>
</tr>
<tr>
<td>Anteil</td>
<td>74,1%</td>
<td>3,0%</td>
<td>0,7%</td>
<td>22,3%</td>
<td>100,0%</td>
</tr>
<tr>
<td>CO₂-Äquivalente</td>
<td>3,51</td>
<td>0,12</td>
<td>0,03</td>
<td>1,06</td>
<td>4,72</td>
</tr>
<tr>
<td>Anteil</td>
<td>74,2%</td>
<td>2,6%</td>
<td>0,7%</td>
<td>22,5%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Tabelle 26: Vermiedene Treibhausgasemissionen pro Jahr nach Kreditprogrammen für den
Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Mio. t/a</th>
<th>EE Standard</th>
<th>EE Premium</th>
<th>EE Speicher</th>
<th>Offshore-Windenergie</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>3,29</td>
<td>0,11</td>
<td>0,02</td>
<td>0,95</td>
<td>4,38</td>
</tr>
<tr>
<td>Anteil</td>
<td>75,2%</td>
<td>2,6%</td>
<td>0,5%</td>
<td>21,7%</td>
<td>100,0%</td>
</tr>
<tr>
<td>CO₂-Äquivalente</td>
<td>3,62</td>
<td>0,10</td>
<td>0,02</td>
<td>1,04</td>
<td>4,79</td>
</tr>
<tr>
<td>Anteil</td>
<td>75,6%</td>
<td>2,1%</td>
<td>0,5%</td>
<td>21,8%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Wie auch in den Vorjahren entfällt ein großer Teil der Treibhausgasminderungen auf die
geförderten Windenergieanlagen. Diese stehen für jeweils gut 90 % der vermiedenen
Treibhausgasemissionen der beiden Förderjahre 2015 und 2016. Der Beitrag der ge-
förderten Photovoltaikanlagen zur Treibhausgasminderung ist in den vergangenen Jah-
ren deutlich gesunken und liegt mittlerweile im einstelligen Prozentbereich (vgl. Tabelle
27 und Tabelle 28).
Tabelle 27: Vermiedene Treibhausgasemissionen pro Jahr nach Technologiebereichen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Technologiebereich</th>
<th>1.000 t/a</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂-Äquivalente</th>
<th>Anteil CO₂-Äquiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>2.968</td>
<td>11,4</td>
<td>0,046</td>
<td></td>
<td>3.267</td>
<td>69,2%</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>963</td>
<td>3,7</td>
<td>0,015</td>
<td></td>
<td>1.060</td>
<td>22,5%</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>57</td>
<td>-0,5</td>
<td>-0,017</td>
<td></td>
<td>39</td>
<td>0,8%</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>154</td>
<td>0,6</td>
<td>0,002</td>
<td></td>
<td>170</td>
<td>3,6%</td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV¹)</td>
<td>29</td>
<td>0,1</td>
<td>0,000</td>
<td></td>
<td>32</td>
<td>0,7%</td>
</tr>
<tr>
<td>Biogasleitungen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>25</td>
<td>0,1</td>
<td>0,0004</td>
<td></td>
<td>27</td>
<td>0,6%</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>45</td>
<td>-0,37</td>
<td>-0,012</td>
<td></td>
<td>32</td>
<td>0,7%</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,3</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td>0,3</td>
<td>0,01%</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>28</td>
<td>0,1</td>
<td>0,001</td>
<td></td>
<td>31</td>
<td>0,7%</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,2</td>
<td>0,0002</td>
<td>-0,00001</td>
<td></td>
<td>0,2</td>
<td>0,003%</td>
</tr>
<tr>
<td>Summe</td>
<td>4.328</td>
<td>15,4</td>
<td>0,034</td>
<td></td>
<td>4.723</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

Tabelle 28: Vermiedene Treibhausgasemissionen pro Jahr nach Technologiebereichen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Technologiebereich</th>
<th>1.000 t/a</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂-Äquivalente</th>
<th>Anteil CO₂-Äquiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>3.076</td>
<td>11,8</td>
<td>0,048</td>
<td></td>
<td>3.386</td>
<td>70,6%</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>949</td>
<td>3,6</td>
<td>0,01</td>
<td></td>
<td>1.045</td>
<td>21,8%</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>4</td>
<td>0,0</td>
<td>-0,001</td>
<td></td>
<td>3</td>
<td>0,1%</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>207</td>
<td>0,8</td>
<td>0,003</td>
<td></td>
<td>229</td>
<td>4,8%</td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV¹)</td>
<td>22</td>
<td>0,1</td>
<td>0,0003</td>
<td></td>
<td>24</td>
<td>0,5%</td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>47</td>
<td>0,2</td>
<td>-0,001</td>
<td></td>
<td>51</td>
<td>1,1%</td>
</tr>
<tr>
<td>Biogasleitungen</td>
<td>0,4</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td>0,4</td>
<td>0,0%</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>5</td>
<td>0,02</td>
<td>0,0</td>
<td></td>
<td>6</td>
<td>0,1%</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>58</td>
<td>-0,48</td>
<td>-0,015</td>
<td></td>
<td>41</td>
<td>0,9%</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,2</td>
<td>0,0003</td>
<td>0,0</td>
<td></td>
<td>0,2</td>
<td>0,00%</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>6</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td>7</td>
<td>0,1%</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>2,0</td>
<td>0,003</td>
<td>-0,0001</td>
<td></td>
<td>2</td>
<td>0,04%</td>
</tr>
<tr>
<td>Summe</td>
<td>4.377</td>
<td>16,1</td>
<td>0,048</td>
<td></td>
<td>4.793</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

3.3.2 Vermiedene Luftschadstoffemissionen

Durch die Substitution fossiler Brennstoffe werden nicht nur Treibhausgase vermieden, sondern auch Luftschadstoffe. Allerdings verursachen auch Anlagen, deren Betrieb weitgehend emissionsfrei ist (also z.B. Windkraft- und PV-Anlagen), Emissionen durch ihre Herstellung. Die Berücksichtigung von Vorketten (d.h. Emissionen durch die Anlagenherstellung) sowie der Emissionen aus dem Anlagenbetrieb führt für bestimmte Technologien bzw. Schadstoffe zu einer negativen Einsparung, d.h. zu einem Mehrausstoß, der den Erneuerbaren Energien zuzurechnen ist. Dies ist insbesondere dort der Fall, wo biogene Brennstoffe genutzt werden, d.h. im Bereich der Nutzung von Biomasse in Biogasanlagen oder Heiz(kraft)werken (vgl. Tabelle 29 bis Tabelle 32).

<table>
<thead>
<tr>
<th></th>
<th>t/a</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>SO₂-Äquivalente¹</th>
<th>NMVOC</th>
<th>Feinstaub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>1.230</td>
<td>2.206</td>
<td>2.766</td>
<td>118</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>407</td>
<td>729</td>
<td>914</td>
<td>40</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>-31</td>
<td>-121</td>
<td>-116</td>
<td>-16</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>54</td>
<td>108</td>
<td>129</td>
<td>6</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV²)</td>
<td>10</td>
<td>21</td>
<td>25</td>
<td>1,1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>34</td>
<td>-84</td>
<td>-25</td>
<td>-82</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>10</td>
<td>18</td>
<td>23</td>
<td>1,0</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Wärmennetze</td>
<td>-20</td>
<td>-65</td>
<td>-65</td>
<td>-65</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,0</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>22</td>
<td>33</td>
<td>45</td>
<td>33,2</td>
<td>7,4</td>
<td></td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,0</td>
<td>0,04</td>
<td>0,0</td>
<td>0,04</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>1.716</td>
<td>2.845</td>
<td>3.697</td>
<td>35</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) SO₂-Äquivalente bieten einen Anhaltspunkt für das Versauerungspotenzial durch SO₂ und NOₓ. Diese Größe wird im Folgenden nicht weiter verwendet, da sich die Wertansätze in Abschnitt 3.3.3 auf SO₂ und NOₓ direkt beziehen.

²) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

<table>
<thead>
<tr>
<th></th>
<th>t/a</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>SO₂-Äquivalente¹</th>
<th>NMVOC</th>
<th>Feinstaub</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>1.264</td>
<td>2.208</td>
<td>2.801</td>
<td>106</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>EE Speicher</td>
<td>10</td>
<td>21</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EE Premium</td>
<td>35</td>
<td>-112</td>
<td>-43</td>
<td>-112</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Offshore</td>
<td>407</td>
<td>729</td>
<td>914</td>
<td>40</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>1.716</td>
<td>2.845</td>
<td>3.697</td>
<td>35</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) vgl. Tabelle 29.
Über alle geförderten Technologien ist festzustellen, dass die in den Jahren 2015 und 2016 geförderten Anlagen insgesamt zu einer Minderung an \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC sowie Feinstaub beitragen. Im Bereich der Biomasse sowie der mit Wärme aus Biomasseanlagen gespeisten Wärmenetze sind jedoch Mehremissionen bei \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC sowie Feinstaub zu verzeichnen. Den überwiegend positiven Umwelteigenschaften der Nutzung Erneuerbarer Energien, insbesondere der Treibhausgaseinsparung, stehen somit auch Nachteile gegenüber. Die Bewertung der Vor- und Nachteile der mit der Nutzung Erneuerbarer Energien verbundenen Umweltwirkungen im folgenden Kapitel anhand der monetären Bewertung der vermiedenen externen Kosten wird allerdings zeigen, dass die Vorteile deutlich überwiegen.

Über alle geförderten Technologien ist festzustellen, dass die in den Jahren 2015 und 2016 geförderten Anlagen insgesamt zu einer Minderung an \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC sowie Feinstaub beitragen. Im Bereich der Biomasse sowie der mit Wärme aus Biomasseanlagen gespeisten Wärmenetze sind jedoch Mehremissionen bei \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC sowie Feinstaub zu verzeichnen. Den überwiegend positiven Umwelteigenschaften der Nutzung Erneuerbarer Energien, insbesondere der Treibhausgaseinsparung, stehen somit auch Nachteile gegenüber. Die Bewertung der Vor- und Nachteile der mit der Nutzung Erneuerbarer Energien verbundenen Umweltwirkungen im folgenden Kapitel anhand der monetären Bewertung der vermiedenen externen Kosten wird allerdings zeigen, dass die Vorteile deutlich überwiegen.

Über alle geförderten Technologien ist festzustellen, dass die in den Jahren 2015 und 2016 geförderten Anlagen insgesamt zu einer Minderung an \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC sowie Feinstaub beitragen. Im Bereich der Biomasse sowie der mit Wärme aus Biomasseanlagen gespeisten Wärmenetze sind jedoch Mehremissionen bei \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC sowie Feinstaub zu verzeichnen. Den überwiegend positiven Umwelteigenschaften der Nutzung Erneuerbarer Energien, insbesondere der Treibhausgaseinsparung, stehen somit auch Nachteile gegenüber. Die Bewertung der Vor- und Nachteile der mit der Nutzung Erneuerbarer Energien verbundenen Umweltwirkungen im folgenden Kapitel anhand der monetären Bewertung der vermiedenen externen Kosten wird allerdings zeigen, dass die Vorteile deutlich überwiegen.

Tabelle 31: Jährliche Vermeidung von Luftschadstoffen nach Technologiebereichen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>t/a</th>
<th>(\text{SO}_2)</th>
<th>(\text{NO}_x)</th>
<th>(\text{SO}_2)-Äquivalente(^1)</th>
<th>NMVOC</th>
<th>Feinstaub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>1.275</td>
<td>2.286</td>
<td>2.866</td>
<td>123</td>
<td>78</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>401</td>
<td>718</td>
<td>900</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>-2</td>
<td>-8</td>
<td>-8</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>73</td>
<td>146</td>
<td>175</td>
<td>8</td>
<td>-3</td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV(^2))</td>
<td>8</td>
<td>16</td>
<td>19</td>
<td>0,8</td>
<td>0</td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>28</td>
<td>-68</td>
<td>-19</td>
<td>-68</td>
<td>1</td>
</tr>
<tr>
<td>Biogasleitungen</td>
<td>-0,2</td>
<td>-0,5</td>
<td>-1</td>
<td>-0,6</td>
<td>0,0</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>-25</td>
<td>-84</td>
<td>-84</td>
<td>-84</td>
<td>-1</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,0</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6,9</td>
<td>1,6</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>-0,6</td>
<td>0,53</td>
<td>-0,2</td>
<td>0,53</td>
<td>0,0</td>
</tr>
<tr>
<td>Summe</td>
<td>1.763</td>
<td>3.017</td>
<td>3.862</td>
<td>24</td>
<td>107</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.\(^{1,2}\) vgl. Tabelle 29.

Tabelle 32: Jährliche Vermeidung von Luftschadstoffen nach Förderprogrammen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>t/a</th>
<th>(\text{SO}_2)</th>
<th>(\text{NO}_x)</th>
<th>(\text{SO}_2)-Äquivalente(^1)</th>
<th>NMVOC</th>
<th>Feinstaub</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>1.349</td>
<td>2.427</td>
<td>3.038</td>
<td>128</td>
<td>75</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>8</td>
<td>16</td>
<td>19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EE Premium</td>
<td>5</td>
<td>-143</td>
<td>-94</td>
<td>-143</td>
<td>2</td>
</tr>
<tr>
<td>Offshore</td>
<td>401</td>
<td>718</td>
<td>900</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Summe</td>
<td>1.763</td>
<td>3.017</td>
<td>3.862</td>
<td>24</td>
<td>107</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.\(^1\) vgl. Tabelle 29.
3.3.3 Vermiedene externe Kosten

Die Bewertung der Luftschadstoffe SO₂, NOₓ, NMVOC und Feinstaub berücksichtigt quantifizierbare Schäden an menschlicher Gesundheit, Ernteverluste, Materialschäden und Beeinträchtigung der Biodiversität. Negative Schadenskosten entsprechen einem positiven Effekt durch die jeweilige Emission, ausgelöst etwa durch verminderten Düng-
gerbedarf in der Landwirtschaft. Allerdings zeigt sich, dass solche positiven Auswirkungen deutlich geringer sind als die insgesamt verursachten Schäden.

Tabelle 33: Verwendete Wertansätze zur Ermittlung der vermiedenen Schadenskosten.

<table>
<thead>
<tr>
<th>€2014/t</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>NMVOC</th>
<th>PM₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klimawandel</td>
<td>84</td>
<td>2.110</td>
<td>25.180</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gesundheitsschäden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.600</td>
<td>13.310</td>
<td>1.740</td>
<td>42.000</td>
</tr>
<tr>
<td>Ernteverluste</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-150</td>
<td>570</td>
<td>-350</td>
<td>-</td>
</tr>
<tr>
<td>Materialschäden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>550</td>
<td>120</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Biodiversität</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>890</td>
<td>2.300</td>
<td>-310</td>
<td>-</td>
</tr>
<tr>
<td>Summe</td>
<td>84</td>
<td>2.110</td>
<td>25.180</td>
<td>13.890</td>
<td>16.300</td>
<td>1.780</td>
<td>42.000</td>
</tr>
</tbody>
</table>

Werte nach [27], umgerechnet auf Preisbasis 2014 und gerundet.
1) PM₁₀ bezeichnet Feinstaub („particulate matter“) mit einem aerodynamischen Partikeldurchmesser kleiner als 10 µm.

In den beiden Förderjahren 2015 und 2016 entfallen 93 % der vermiedenen externen Kosten auf die geförderten Windenergieanlagen, auf Photovoltaikanlagen entfallen rund 4 % bzw. 5 %. Daran hat die Einsparung von CO₂ den größten Anteil.
Tabelle 34: Jährlich vermiedene externe Kosten nach Technologiebereichen und Stoffen für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Mio. €2014/a</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>NMVOC</th>
<th>PM₁₀</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>250,8</td>
<td>24,1</td>
<td>1,2</td>
<td>17,1</td>
<td>36,0</td>
<td>0,2</td>
<td>3,2</td>
<td>332,5</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>81,4</td>
<td>7,8</td>
<td>0,4</td>
<td>5,7</td>
<td>11,9</td>
<td>0,07</td>
<td>1,3</td>
<td>108,5</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>4,8</td>
<td>-1,07</td>
<td>-0,4</td>
<td>-0,4</td>
<td>-2,0</td>
<td>-0,03</td>
<td>-0,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>13,0</td>
<td>1,3</td>
<td>0,1</td>
<td>0,8</td>
<td>1,8</td>
<td>0,01</td>
<td>-0,09</td>
<td>16,8</td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV¹)</td>
<td>2,5</td>
<td>0,2</td>
<td>0,01</td>
<td>0,1</td>
<td>0,3</td>
<td>0,002</td>
<td>-0,02</td>
<td>3,2</td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>5,0</td>
<td>0,5</td>
<td>-0,04</td>
<td>0,5</td>
<td>-1,4</td>
<td>-0,1</td>
<td>0,05</td>
<td>4,4</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>2,1</td>
<td>0,2</td>
<td>0,01</td>
<td>0,1</td>
<td>0,3</td>
<td>0,002</td>
<td>0,03</td>
<td>2,8</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>3,8</td>
<td>-0,8</td>
<td>-0,3</td>
<td>-0,3</td>
<td>-1,1</td>
<td>-0,1</td>
<td>-0,04</td>
<td>1,2</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,02</td>
<td>0,001</td>
<td>0,0001</td>
<td>0,001</td>
<td>0,003</td>
<td>0,0004</td>
<td>-0,0002</td>
<td>0,03</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>2,4</td>
<td>0,2</td>
<td>0,02</td>
<td>0,3</td>
<td>0,5</td>
<td>0,06</td>
<td>0,3</td>
<td>3,9</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,01</td>
<td>0,0005</td>
<td>-0,0002</td>
<td>-0,001</td>
<td>0,001</td>
<td>0,0001</td>
<td>-0,000003</td>
<td>0,01</td>
</tr>
<tr>
<td>Summe</td>
<td>365,7</td>
<td>32,5</td>
<td>0,9</td>
<td>23,8</td>
<td>46,4</td>
<td>0,1</td>
<td>4,6</td>
<td>474,0</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

Tabelle 35: Jährlich vermiedene externe Kosten nach Technologiebereichen und Stoffen für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Mio. €2014/a</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>NMVOC</th>
<th>PM₁₀</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>259,9</td>
<td>25,0</td>
<td>1,2</td>
<td>17,7</td>
<td>37,3</td>
<td>0,2</td>
<td>3,3</td>
<td>344,5</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>80,2</td>
<td>7,7</td>
<td>0,4</td>
<td>5,6</td>
<td>11,7</td>
<td>0,07</td>
<td>1,3</td>
<td>106,9</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>0,3</td>
<td>-0,07</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-0,1</td>
<td>-0,002</td>
<td>-0,01</td>
<td>0,1</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>17,5</td>
<td>1,7</td>
<td>0,1</td>
<td>1,0</td>
<td>2,4</td>
<td>0,01</td>
<td>-0,1</td>
<td>22,6</td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV¹)</td>
<td>1,9</td>
<td>0,2</td>
<td>0,008</td>
<td>0,11</td>
<td>0,3</td>
<td>0,001</td>
<td>-0,01</td>
<td>2,4</td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>4,0</td>
<td>0,4</td>
<td>-0,03</td>
<td>0,4</td>
<td>-1,1</td>
<td>-0,1</td>
<td>0,05</td>
<td>3,5</td>
</tr>
<tr>
<td>Biogasleitungen</td>
<td>0,03</td>
<td>-0,008</td>
<td>0,003</td>
<td>-0,003</td>
<td>-0,008</td>
<td>-0,001</td>
<td>-0,0004</td>
<td>0,01</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>0,4</td>
<td>0,04</td>
<td>0,002</td>
<td>0,03</td>
<td>0,1</td>
<td>0,0004</td>
<td>0,006</td>
<td>0,6</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>4,9</td>
<td>-1,0</td>
<td>-0,38</td>
<td>-0,4</td>
<td>-1,4</td>
<td>-0,15</td>
<td>-0,05</td>
<td>1,6</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,02</td>
<td>0,001</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,002</td>
<td>0,0002</td>
<td>-0,0001</td>
<td>0,02</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>0,5</td>
<td>0,05</td>
<td>0,004</td>
<td>0,1</td>
<td>0,1</td>
<td>0,01</td>
<td>0,07</td>
<td>0,8</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,2</td>
<td>0,006</td>
<td>-0,002</td>
<td>-0,008</td>
<td>0,009</td>
<td>0,001</td>
<td>-0,000004</td>
<td>0,18</td>
</tr>
<tr>
<td>Summe</td>
<td>369,8</td>
<td>34,0</td>
<td>1,2</td>
<td>24,5</td>
<td>49,2</td>
<td>0,04</td>
<td>4,5</td>
<td>483,2</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

¹) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

Tabelle 36: Jährlich vermiedene externe Kosten nach Technologiebereichen und Schadenskategorien für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Mio. €2014/a</th>
<th>Klimawandel</th>
<th>Gesundheitsschäden</th>
<th>Ernteverluste</th>
<th>Materialschäden</th>
<th>Biodiversität</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>276,0</td>
<td>48,3</td>
<td>1,1</td>
<td>0,9</td>
<td>6,1</td>
<td>332,5</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>89,6</td>
<td>16,2</td>
<td>0,4</td>
<td>0,3</td>
<td>2,0</td>
<td>108,5</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>3,3</td>
<td>-2,1</td>
<td>-0,1</td>
<td>-0,3</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>14,3</td>
<td>2,0</td>
<td>0,1</td>
<td>0,3</td>
<td>16,8</td>
<td></td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV)</td>
<td>2,7</td>
<td>0,4</td>
<td>0,01</td>
<td>0,1</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>5,4</td>
<td>-0,8</td>
<td>-0,1</td>
<td>0,009</td>
<td>-0,1</td>
<td>4,4</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>2,3</td>
<td>0,4</td>
<td>0,01</td>
<td>0,008</td>
<td>0,05</td>
<td>2,8</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>2,7</td>
<td>-1,3</td>
<td>-0,06</td>
<td>-0,2</td>
<td>-0,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,02</td>
<td>0,004</td>
<td>0,0002</td>
<td>0,0005</td>
<td>0,0005</td>
<td>0,03</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>2,6</td>
<td>1,1</td>
<td>0,03</td>
<td>0,02</td>
<td>0,09</td>
<td>3,9</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,01</td>
<td>0,00002</td>
<td>0,00005</td>
<td>-0,00002</td>
<td>0,00004</td>
<td>0,01</td>
</tr>
<tr>
<td>Summe</td>
<td>399,1</td>
<td>64,2</td>
<td>1,4</td>
<td>1,3</td>
<td>8,1</td>
<td>474,0</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Tabelle 37: Jährlich vermiedene externe Kosten nach Förderprogrammen und Schadenskategorien für den Förderjahrgang 2015 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th>Mio. €2014/a</th>
<th>Klimawandel</th>
<th>Gesundheitsschäden</th>
<th>Ernteverluste</th>
<th>Materialschäden</th>
<th>Biodiversität</th>
<th>Summe</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>296,2</td>
<td>48,5</td>
<td>1,1</td>
<td>1,0</td>
<td>6,2</td>
<td>353,0</td>
<td>74,5%</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>2,7</td>
<td>0,4</td>
<td>0,01</td>
<td>0,01</td>
<td>0,1</td>
<td>3,2</td>
<td>0,7%</td>
</tr>
<tr>
<td>EE Premium</td>
<td>10,5</td>
<td>-0,9</td>
<td>-0,1</td>
<td>0,01</td>
<td>-0,2</td>
<td>9,3</td>
<td>2,0%</td>
</tr>
<tr>
<td>Offshore</td>
<td>89,6</td>
<td>16,2</td>
<td>0,4</td>
<td>0,3</td>
<td>2,0</td>
<td>108,5</td>
<td>22,9%</td>
</tr>
<tr>
<td>Summe</td>
<td>399,1</td>
<td>64,2</td>
<td>1,4</td>
<td>1,3</td>
<td>8,1</td>
<td>474,0</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.
Tabelle 38: Jährlich vermiedene externe Kosten nach Technologiebereichen und Schadenskategorien für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>286,0</td>
<td>50,0</td>
<td>1,2</td>
<td>1,0</td>
<td>6,4</td>
<td>344,5</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>88,3</td>
<td>16,0</td>
<td>0,4</td>
<td>0,3</td>
<td>2,0</td>
<td>106,9</td>
</tr>
<tr>
<td>Biogas (Strom)</td>
<td>0,2</td>
<td>-0,1</td>
<td>-0,005</td>
<td>-0,002</td>
<td>-0,02</td>
<td>0,1</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>19,3</td>
<td>2,8</td>
<td>0,1</td>
<td>0,1</td>
<td>0,4</td>
<td>22,6</td>
</tr>
<tr>
<td>Stromspeicher (einschl. PV)</td>
<td>2,1</td>
<td>0,3</td>
<td>0,01</td>
<td>0,01</td>
<td>0,04</td>
<td>2,4</td>
</tr>
<tr>
<td>Biomasse HW, HKW</td>
<td>4,3</td>
<td>-0,6</td>
<td>-0,1</td>
<td>0,007</td>
<td>-0,1</td>
<td>3,5</td>
</tr>
<tr>
<td>Biogasleitungen</td>
<td>0,02</td>
<td>-0,01</td>
<td>-0,0005</td>
<td>-0,0002</td>
<td>-0,001</td>
<td>0,01</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>0,5</td>
<td>0,1</td>
<td>0,002</td>
<td>0,002</td>
<td>0,01</td>
<td>0,6</td>
</tr>
<tr>
<td>Wärmemnetze</td>
<td>3,5</td>
<td>-1,6</td>
<td>-0,07</td>
<td>-0,02</td>
<td>-0,2</td>
<td>1,6</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,02</td>
<td>0,002</td>
<td>0,0001</td>
<td>0,00003</td>
<td>0,0003</td>
<td>0,02</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>0,6</td>
<td>0,2</td>
<td>0,01</td>
<td>0,003</td>
<td>0,02</td>
<td>0,8</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,17</td>
<td>0,0003</td>
<td>0,0006</td>
<td>-0,0003</td>
<td>0,0005</td>
<td>0,18</td>
</tr>
<tr>
<td>Summe</td>
<td>405,0</td>
<td>66,9</td>
<td>1,5</td>
<td>1,3</td>
<td>8,5</td>
<td>483,2</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

1) Geförderte PV-Neuanlagen im Rahmen des KfW-Programms Erneuerbare Energien „Speicher“.

Tabelle 39: Jährlich vermiedene externe Kosten nach Förderprogrammen und Schadenskategorien für den Förderjahrgang 2016 (ohne geförderte Anlagen im Ausland).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Standard</td>
<td>306,2</td>
<td>52,7</td>
<td>1,2</td>
<td>1,0</td>
<td>6,7</td>
<td>367,9</td>
<td>76,1%</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>2,1</td>
<td>0,3</td>
<td>0,01</td>
<td>0,01</td>
<td>0,04</td>
<td>2,4</td>
<td>0,5%</td>
</tr>
<tr>
<td>EE Premium</td>
<td>8,5</td>
<td>-2,0</td>
<td>-0,1</td>
<td>-0,01</td>
<td>-0,3</td>
<td>6,0</td>
<td>1,2%</td>
</tr>
<tr>
<td>Offshore</td>
<td>88,3</td>
<td>16,0</td>
<td>0,4</td>
<td>0,3</td>
<td>2,0</td>
<td>106,9</td>
<td>22,1%</td>
</tr>
<tr>
<td>Summe</td>
<td>405,0</td>
<td>66,9</td>
<td>1,5</td>
<td>1,3</td>
<td>8,5</td>
<td>483,2</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

3.3.4 Vergleich der Förderjahrgänge 2015 und 2016

Abbildung 4: Vergleich der CO₂- und Treibhausgaseinsparung der Förderjahrgänge 2015 und 2016 (ohne geförderte Anlagen im Ausland)

Abbildung 5: Vergleich der jährlich vermiedenen externen Kosten der Förderjahrgänge 2015 und 2016 (ohne geförderte Anlagen im Ausland)
3.4 Bruttoprogrammefekte in Deutschland

Die Schätzung der durch die Fördermaßnahmen der KfW im Bereich der Erneuerbaren Energien ausgelösten Bruttoprogramm basiert auf einem nachfrageorientierten Ansatz, der als Ausgangspunkt die durch die unterschiedlichen Förderprogramme mit ausgelöste Nachfrage nach Gütern hat. Als wesentliche Komponenten der in die Untersuchung einbezogenen Nachfrage werden die Investitionen in neu installierte Anlagen zur Nutzung Erneuerbarer Energien sowie die damit über die gesamte unterstellte Lebensdauer der Anlagen verbundenen laufenden Aufwendungen zum Betrieb und zur Wartung berücksichtigt.

3.4.1 Eingangsdaten

Auf Basis methodischer Weiterentwicklungen konnten für die Förderjahre 2015 und 2016 erstmals Beschäftigungseffekte aus Investitionen in Wärmeverteiler, Wärmespeicher und kleine Batteriespeicher abgeschätzt werden. Diese Schätzungen sind allerdings weniger belastbar als die bereits seit Jahren etablierten Berechnungen und werden deshalb eben-

falls nur nachrichtlich ausgewiesen. Für eine Abschätzung der Beschäftigungseffekte aus dem Betrieb der genannten Anlagen fehlen noch die Grundlagen.

Tabelle 40: Aus KfW-geförderten Anlagen resultierende im Inland wirksame Nachfrage durch Investitionen.

<table>
<thead>
<tr>
<th>Mio. € exkl. MwSt.</th>
<th>KfW-geförderte Anlagen: Investitionen insgesamt</th>
<th>davon im Inland wirksame Nachfrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>3.728,2</td>
<td>4.081,5</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>406,7</td>
<td>489,0</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>5,1</td>
<td>2,6</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>19,8</td>
<td>8,2</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>53,1</td>
<td>40,1</td>
</tr>
<tr>
<td>Biogas(^1)</td>
<td>18,7</td>
<td>2,0</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>18,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Große Wärmepumpen</td>
<td>0,2</td>
<td>2,3</td>
</tr>
<tr>
<td>Summe</td>
<td>4.249,8</td>
<td>4.626,5</td>
</tr>
</tbody>
</table>

Nachrichtlich:

Windenergie auf See\(^2\)	1.648,0	1.630,0	1.648,0	(100,0 %)	1.630,0	(100,0 %)
Wärmenetze	111,1	118,4	108,2	(97,4 %)	115,3	(97,4 %)
Wärmespeicher	6,5	5,4	6,5	(100,0 %)	5,4	(100,0 %)
Kleine Batteriespeicher\(^3\)	93,3	66,7	55,5	(59,5 %)	39,7	(59,5 %)

\(^1\) Stromerzeugung mit Biogas. Biogasleitungen werden hier aus methodischen Gründen nicht berücksichtigt.
\(^2\) Der überwiegende Teil der Investitionen wird erst in den Folgejahren beschäftigungswirksam.
\(^3\) Im Förderjahr 2016 wurden zusätzlich Investitionen in große Batteriespeicher gefördert, die hier aus methodischen Gründen nicht berücksichtigt werden.

3.4.2 Ergebnisse

Durch die in den Jahren 2015 und 2016 geförderten und beschäftigungswirksamen Investitionen konnten rund 42.700 bzw. 45.800 Arbeitsplätze (Personenjahre) in Deutschland für ein Jahr gesichert bzw. neu geschaffen werden (vgl. Tabelle 41 und Tabelle 42). Davon fielen 2015 und 2016 17.040 (39,9 %) bzw. 18.340 (40,0 %) direkt in den Branchen an, die Anlagen zur Nutzung Erneuerbarer Energien produzieren (sog. direkte Effekte), und 25.660 (60,1 %) bzw. 27.470 (60,0 %) in den zuliefernden vorgelagerten Branchen der Volkswirtschaft (sog. indirekte Effekte). Abschätzungen der investitionsbedingten Beschäftigungseffekte der Erneuerbaren Energien in Deutschland belaufen sich für das Jahr 2015 auf 182.800 (vgl. [14])\(^6\). Allerdings beinhalten diese Werte auch den Export von Anlagen, Komponenten und Dienstleistungen, weshalb die Zahlen nicht direkt miteinander vergleichbar sind.

\(^6\) Für das Jahr 2016 waren zum Zeitpunkt der Berichtserstellung noch keine Daten veröffentlicht.
Tabelle 41: Durch im Jahr 2015 KfW-geförderte Investitionen ausgelöste Beschäftigung in Deutschland.

<table>
<thead>
<tr>
<th>Personenjahre (gerundet)</th>
<th>Investitionen</th>
<th>Betrieb (20 Jahre)</th>
<th>Summe2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direkt</td>
<td>Indirekt</td>
<td>Direkt</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>15.320</td>
<td>22.490</td>
<td>10.940</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>1.210</td>
<td>2.630</td>
<td>480</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>80</td>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>210</td>
<td>170</td>
<td>290</td>
</tr>
<tr>
<td>Biogas1</td>
<td>80</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>110</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Summe2</td>
<td>17.040</td>
<td>25.660</td>
<td>11.970</td>
</tr>
</tbody>
</table>

Nachrichtlich:

<table>
<thead>
<tr>
<th></th>
<th>Direkt</th>
<th>Indirekt</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie auf See3</td>
<td>5.960</td>
<td>10.890</td>
<td>3.760</td>
<td>4.280</td>
</tr>
<tr>
<td>Wärmenetze</td>
<td>820</td>
<td>690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmespeicher</td>
<td>50</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleine Batteriespeicher</td>
<td>410</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Stromerzeugung mit Biogas.
2 Abweichungen durch Rundung möglich.
3 Der überwiegende Teil der Investitionen wird erst in den Folgejahren beschäftigungswirksam.

Im Jahr 2015 wurden rund 37.800 Personen durch den Bau KfW-gefördeter Onshore-Windkraftanlagen beschäftigt (entspricht 89 % der gesamten durch die Investitionen ausgelöste Beschäftigung), ca. 3.800 durch Photovoltaikanlagen. Die übrigen Technologien spielten hinsichtlich der Beschäftigungswirkung nur eine untergeordnete Rolle. Produktion und Bau der geförderten Offshore-Windkraftanlagen weisen einen zusätzlichen Beschäftigungseffekt (für die Dauer eines Jahres) in Höhe von rund 16.850 Personen auf, der sich allerdings rechnerisch überwiegend auf die Folgejahre, in denen die Anlagen errichtet werden, verteilt.

Tabelle 42: Durch im Jahr 2016 KfW-geförderte Investitionen ausgelöste Beschäftigung in Deutschland.

<table>
<thead>
<tr>
<th>Personenjahre (gerundet)</th>
<th>Investitionen</th>
<th>Betrieb (20 Jahre)</th>
<th>Summe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direkt</td>
<td>Indirekt</td>
<td>Direkt</td>
<td>Indirekt</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>16.730</td>
<td>24.150</td>
<td>11.240</td>
<td>13.630</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>1.390</td>
<td>3.100</td>
<td>640</td>
<td>1.160</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>10</td>
<td>20</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>160</td>
<td>130</td>
<td>200</td>
<td>290</td>
</tr>
<tr>
<td>Biogas</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Geothermie (tief)</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Große Wärmepumpe</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Summe</td>
<td>18.340</td>
<td>27.470</td>
<td>12.190</td>
<td>15.260</td>
</tr>
</tbody>
</table>

Nachrichtlich:

- Windenergie auf See: 5.870 | 10.560 | 3.650 | 4.130 | 24.220 |
- Wärmenetze: 860 | 720 | - | - | 1.580 |
- Wärmespeicher: 40 | 30 | - | - | 80 |
- Kleine Batteriespeicher: 280 | 210 | - | - | 490 |

1) Stromerzeugung mit Biogas.
2) Abweichungen durch Rundung möglich.
3) Der überwiegende Teil der Investitionen wird erst in den Folgejahren beschäftigungswirksam.

Die geschätzten Beschäftigungseffekte durch geförderte Wärmenetze, Wärmespeicher und kleine Batteriespeicher illustrieren den Beitrag dieser Verwendungszwecke zu den von der gesamten Förderung ausgelösten Beschäftigungseffekten. In beiden Berichtsjahren belegen bei Betrachtung der Investitionseffekte die Wärmenetze und die Batterie-
speicher den vierten und fünften Rang mit deutlichem Abstand zu den übrigen geförder-ten Anlagenarten.

Tabelle 43: Durch KfW-geförderte Investitionen ausgelöste Beschäftigung in Deutschland nach Förderprogrammen.

<table>
<thead>
<tr>
<th>Personenjahre (gerundet)</th>
<th>FJ 2015</th>
<th>FJ 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investition</td>
<td>Betrieb</td>
</tr>
<tr>
<td>EE Standard</td>
<td>41.170</td>
<td>25.990</td>
</tr>
<tr>
<td>EE Speicher</td>
<td>870<sup>1)</sup></td>
<td>330</td>
</tr>
<tr>
<td>EE Premium</td>
<td>650<sup>2)</sup></td>
<td>840</td>
</tr>
<tr>
<td>Summe<sup>3)</sup></td>
<td>42.690</td>
<td>27.160</td>
</tr>
</tbody>
</table>

Tabelle 43 zeigt die Aufteilung der in Deutschland ausgelösten Beschäftigung auf die verschiedenen Förderprogramme.

Nach Definition des Instituts für Mittelstandsforschung (IfM) ist ein Unternehmen ein kleines oder mittleres Unternehmen (KMU) wenn es weniger als 500 Beschäftigte hat und der jährliche Umsatz unter 50 Millionen € liegt (vgl. [16]). Zur Ermittlung des Anteils der auf KMU entfallenden Arbeitsplätze wurde anhand aktueller Daten des IfM (vgl. [17]) für jeden Wirtschaftssektor der KMU-Anteil an den sozialversicherungspflichtig Beschäftigten ermittelt. Mit Hilfe dieser relativen Anteile lässt sich die Zahl der indirekt Beschäftigten in KMU aus den mit der Input-Output-Tabelle berechneten (indirekten) Beschäftigten in den „traditionellen“ Wirtschaftssektoren (z. B. Baugewerbe) berechnen. Schwierig gestaltet sich dagegen die Abschätzung der direkt Beschäftigten in KMU, da für die „neuen“ Sektoren keine Daten zur Beschäftigung nach Unternehmensgröße vorliegen. Für die verschiedenen EE-Sparten lässt sich der Mittelstandsanteil deshalb nur grob abschätzen; hierfür wurde der relative Anteil für den Sektor „Verarbeitendes Gewerbe“ angenommen.

Von den in den Jahren 2015 und 2016 insgesamt 69.860 bzw. 73.250 für die Dauer eines Jahres gesicherten bzw. neu geschaffenen Arbeitsplätzen entfallen 52,5 % bzw. 52,4 % auf kleine und mittlere Unternehmen.

3.4.3 Vergleich der Förderjahrgänge 2015 und 2016

Die Entwicklung der ermittelten Beschäftigungswirkungen spiegelt die Tendenzen im Fördergeschehen wider: Sowohl 2015 als auch 2016 dominieren Onshore-Windkraftanlagen die Beschäftigungseffekte, sowohl bei den Investitionseffekten als auch bei den Betriebseffekten.

Abbildung 6: Durch die 2015 und 2016 getätigten Investitionen in KfW-geförderte Anlagen ausgelöste Beschäftigung in Deutschland.

4 Wirkungen durch geförderte Anlagen im Ausland

4.1 Investitionsvolumen und geförderte Leistung

4.1.1 Ausgelöstes Investitionsvolumen und geförderte Leistung

<table>
<thead>
<tr>
<th>Förderjahr 2015 (exkl. MwSt)</th>
<th>Photovoltaik</th>
<th>Wasserkraft</th>
<th>Windenergie an Land an Land</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dänemark</td>
<td>136,9</td>
<td>141,8</td>
<td>-</td>
<td>136,9</td>
</tr>
<tr>
<td>Finnland</td>
<td>-</td>
<td>-</td>
<td>216,2</td>
<td>216,2</td>
</tr>
<tr>
<td>Frankreich</td>
<td>61,9</td>
<td>64,0</td>
<td>637,3</td>
<td>699,2</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>97,2</td>
<td>59,8</td>
<td>20,9</td>
<td>118,0</td>
</tr>
<tr>
<td>Irland</td>
<td>-</td>
<td>-</td>
<td>14,9</td>
<td>14,9</td>
</tr>
<tr>
<td>Italien</td>
<td>-</td>
<td>-</td>
<td>112,8</td>
<td>112,8</td>
</tr>
<tr>
<td>Kanada</td>
<td>-</td>
<td>-</td>
<td>12,3</td>
<td>12,3</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,2</td>
<td>0,2</td>
<td>23,7</td>
<td>25,7</td>
</tr>
<tr>
<td>Summe</td>
<td>296,2</td>
<td>265,7</td>
<td>1.038,0</td>
<td>1.336,0</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

<table>
<thead>
<tr>
<th>Förderjahr 2016</th>
<th>Photovoltaik (exkl. MwSt)</th>
<th>Wasserkraft</th>
<th>Windenergie an Land</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mio. €</td>
<td>MWel</td>
<td>Mio. €</td>
<td>MWel</td>
</tr>
<tr>
<td>Dänemark</td>
<td>49,4</td>
<td>62,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Finnland</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frankreich</td>
<td>14,5</td>
<td>12,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>36,7</td>
<td>24,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Irland</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Italien</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>28,8</td>
<td>10,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kanada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kroatien</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niederlande</td>
<td>33,3</td>
<td>30,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Österreich</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>0,08</td>
</tr>
<tr>
<td>Schweden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summe</td>
<td>162,7</td>
<td>140,7</td>
<td>0,5</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

4.1.2 Vergleich der Förderjahrgänge 2015 und 2016

Abbildung 8 illustriert, dass im Jahresvergleich die KfW-geförderten Auslandsinvestitionen in allen drei Sparten gesunken sind. Während bei den Windkraftanlagen an Land nur ein leichter Rückgang zu verzeichnen war, sanken die Investitionen im Photovoltaikbereich und bei Wasserkraftanlagen deutlich.

4.2 Vermiedene Treibhausgasemissionen

In Kapitel 3.3 wurde für die von der KfW in Deutschland geförderten EE-Anlagen die Vermeidung von Emissionen und Luftschadstoffen ermittelt. Die zugrundeliegenden Parameter sind das Ergebnis umfangreicher und bereits langjährig etablierter Vorstudien (vgl. [18], [19]). Im Hinblick auf die primär im europäischen Ausland von der KfW geförderten EE-Vorhaben muss festgehalten werden, dass eine vergleichbare und konsistente Methodik für die Länder der EU nicht vorliegt. Im Rahmen des vorliegenden Vorhabens wurde deshalb eine Herangehensweise gewählt, mit der die CO₂-Einspareffekte näherungsweise abgebildet werden können. Für weitere Details zur Methodik wird auf den Anhang A.3 verwiesen.

Die im Jahr 2015 geförderten Anlagen mit Standort im Ausland vermeiden pro Jahr rund 0,2 Mio. t CO₂ (vgl. Tabelle 46). Davon entfallen drei Viertel auf Windenergieanlagen.

<table>
<thead>
<tr>
<th>1.000 t/a</th>
<th>Photovoltaik</th>
<th>Wasserkraft</th>
<th>Windenergie an Land</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dänemark</td>
<td>20,2</td>
<td>-</td>
<td>-</td>
<td>20,2</td>
</tr>
<tr>
<td>Finnland</td>
<td>-</td>
<td>-</td>
<td>29,7</td>
<td>29,7</td>
</tr>
<tr>
<td>Frankreich</td>
<td>3,2</td>
<td>-</td>
<td>34,6</td>
<td>37,8</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>19,8</td>
<td>-</td>
<td>14,5</td>
<td>34,3</td>
</tr>
<tr>
<td>Irland</td>
<td>-</td>
<td>-</td>
<td>9,5</td>
<td>9,5</td>
</tr>
<tr>
<td>Italien</td>
<td>-</td>
<td>-</td>
<td>49,4</td>
<td>49,4</td>
</tr>
<tr>
<td>Kanada</td>
<td>-</td>
<td>-</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,0</td>
<td>0,1</td>
<td>3,5</td>
<td>3,6</td>
</tr>
<tr>
<td>Summe</td>
<td>43,3</td>
<td>0,1</td>
<td>141,8</td>
<td>185,3</td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.

Für die im Jahr 2016 geförderten Anlagen mit Standort im Ausland ist pro Jahr mit einer Einsparung von 0,1 Mio. t CO₂ zu rechnen. Davon entfallen rund 70 % auf die geförderten Windenergieanlagen (vgl. Tabelle 47).

<table>
<thead>
<tr>
<th></th>
<th>1.000 t/a</th>
<th>Photovoltaik</th>
<th>Wasserkraft</th>
<th>Windenergie an Land</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dänemark</td>
<td>9,0</td>
<td></td>
<td></td>
<td>-</td>
<td>9,0</td>
</tr>
<tr>
<td>Finnland</td>
<td>-</td>
<td></td>
<td></td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0,6</td>
<td></td>
<td>24,1</td>
<td>9,5</td>
<td>24,7</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>8,1</td>
<td></td>
<td></td>
<td>8,1</td>
<td>11,2</td>
</tr>
<tr>
<td>Irland</td>
<td>-</td>
<td></td>
<td>9,5</td>
<td>9,5</td>
<td>9,5</td>
</tr>
<tr>
<td>Italien</td>
<td>-</td>
<td></td>
<td>11,2</td>
<td>11,2</td>
<td>11,2</td>
</tr>
<tr>
<td>Japan</td>
<td>5,7</td>
<td></td>
<td></td>
<td>-</td>
<td>5,7</td>
</tr>
<tr>
<td>Kanada</td>
<td>-</td>
<td></td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Kroatien</td>
<td>-</td>
<td></td>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
</tr>
<tr>
<td>Niederlande</td>
<td>10,0</td>
<td></td>
<td></td>
<td>-</td>
<td>10,0</td>
</tr>
<tr>
<td>Österreich</td>
<td>-</td>
<td>0,03</td>
<td>3,9</td>
<td>3,9</td>
<td>3,9</td>
</tr>
<tr>
<td>Schweden</td>
<td>-</td>
<td></td>
<td>8,6</td>
<td>8,6</td>
<td>8,6</td>
</tr>
<tr>
<td>Summe</td>
<td>33,5</td>
<td>0,0</td>
<td>76,2</td>
<td>109,7</td>
<td></td>
</tr>
</tbody>
</table>

Abweichungen in Summen durch Rundung möglich.
Literaturverzeichnis

Anhang

A.1 Ermittlung der Einsparung fossiler Energieträger durch geförderte Anlagen mit Standort in Deutschland

Zur Quantifizierung der eingesparten fossilen Energieträger (Primärenergieeinsparung) und daraus resultierenden Effekte ist der durch die jeweiligen Technologien der Erneuerbaren Energien substituierte Mix fossiler Quellen zu bestimmen. Hierbei spielen zahlreiche Einflussfaktoren eine Rolle, insbesondere die

- zeitliche Struktur der Energiebereitstellung aus Erneuerbaren Energien (speziell Strommarkt),
- geographische Verteilung von regenerativen Erzeugungssystemen (speziell Wärmemarkt),
- Wirkungsgrade der regenerativen und der fossilen Energiebereitstellung und im Anlagenbetrieb tatsächlich erreichbare Nutzungsgrade,
- dem Anlagenbetrieb vor- (Anlagenerstellung), parallel- (z. B. Brennstoffaufbereitung und -bereitstellung) und nachgelagerte (Anlagenbeseitigung/Recycling) energetische Prozesse,
- längerfristige Veränderbarkeit der Bilanzierungsparameter aus technischer (z. B. Brennstoffmix sowie Wirkungsgrade unter Einbeziehung neuer Technologiepfade wie CO₂-Abtrennungs- und Speichertechnologien im Kraftwerksbereich) und ökonomischer Sicht (speziell Preise für fossile Energieträger).7

Die Frage, in welchem Umfang konventionelle Energieträger durch diese Quellen substituiert werden, lässt sich somit nur anhand von Zeitschrittsimulationen (z. B. in stündlicher Auflösung) durchführen, indem der Kraftwerkseinsatz zur Deckung der Stromnachfrage zunächst ohne und anschließend unter Berücksichtigung der Nutzung Erneuerbarer Energien betrachtet wird. Mit anderen Worten: Die Strombereitstellung wird für die 8.760 Stunden eines Jahres einmal ohne und einmal mit Berücksichtigung fluktuierender Er-

Tabelle 48: Substitution konventioneller Energieträger durch die Stromerzeugung aus Erneuerbaren Energien - Bezugsjahr 2016 [19].

<table>
<thead>
<tr>
<th>Substitution</th>
<th>Kernenergie</th>
<th>Braunkohle</th>
<th>Steinkohle</th>
<th>Erdgas</th>
<th>Mineralöl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>0,0%</td>
<td>0,0%</td>
<td>61,0%</td>
<td>39,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>0,0%</td>
<td>0,0%</td>
<td>61,0%</td>
<td>39,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>0,0%</td>
<td>0,0%</td>
<td>64,0%</td>
<td>36,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>0,0%</td>
<td>0,0%</td>
<td>65,0%</td>
<td>35,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>0,0%</td>
<td>0,0%</td>
<td>59,0%</td>
<td>41,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Biogas</td>
<td>0,0%</td>
<td>0,0%</td>
<td>65,0%</td>
<td>35,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Geothermie</td>
<td>0,0%</td>
<td>0,0%</td>
<td>65,0%</td>
<td>35,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Um von den substituierten Strommengen auf die eingesparten fossilen Energieträger zu schließen, werden Primärenergiefaktoren verwendet (vgl. Tabelle 49). Die Primärenergiefaktoren geben an, wie viele Einheiten fossile Primärenergie (einschließlich der Vorketten) eingesetzt werden müssen, um eine Einheit Strom bereitzustellen. In die Primärenergiefaktoren gehen zum Großteil die Wirkungsgrade der direkten Energieumwandlung im Kraftwerk ein.

Tabelle 49: Primärenergiefaktoren zur Berechnung des Primärenergieverbrauchs für die Bereitstellung von Strom - Bezugsjahr 2016 [19].

<table>
<thead>
<tr>
<th>Energieträger</th>
<th>Primärenergieverbrauch (fossil) in kWh<sup>1</sup></th>
<th>Primärenergieverbrauch in kWh<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>2,56</td>
<td>0,04</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>2,47</td>
<td>0,03</td>
</tr>
<tr>
<td>Erdgas</td>
<td>1,88</td>
<td>0,03</td>
</tr>
<tr>
<td>Mineralöl</td>
<td>2,82</td>
<td>0,03</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>Windenergie an Land</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>0,26</td>
<td>0,26</td>
</tr>
<tr>
<td>Geothermie</td>
<td>0,74</td>
<td>0,74</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>0,21</td>
<td>0,21</td>
</tr>
<tr>
<td>Biogas</td>
<td>0,30</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Anmerkung: Für Kernenergie liegen keine Primärenergiefaktoren vor; die eingesparten Brennstoffkosten sind auf Grund der geringen für den Betrieb von Kernkraftwerken erforderlichen Mengen vernachlässigbar.

Mit der vorliegenden Substitutionsmethodik wird auch für die einzelnen erneuerbaren Energieträger im Wärmesektor differenziert ermittelt, welche fossilen Energieträger eingespart werden. Die für die einzelnen Technologien zur erneuerbaren Wärmebereitstellung angesetzten Substitutionsbeziehungen sind in Tabelle 50 dargestellt:

Tabelle 50: Substitution konventioneller Energieträger durch die Wärmeerzeugung mit Erneuerbaren Energien - Bezugsjahr 2016 [19].

<table>
<thead>
<tr>
<th></th>
<th>Heizöl</th>
<th>Erdgas</th>
<th>Steinkohle</th>
<th>Braunkohle</th>
<th>Fernwärme</th>
<th>Strom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarthermie</td>
<td>44,9%</td>
<td>50,6%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,6%</td>
<td>2,9%</td>
</tr>
<tr>
<td>Wärmepumpen</td>
<td>42,9%</td>
<td>47,7%</td>
<td>0,5%</td>
<td>1,4%</td>
<td>4,4%</td>
<td>3,2%</td>
</tr>
<tr>
<td>Biogas</td>
<td>56,3%</td>
<td>42,4%</td>
<td>1,3%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Feste Biomasse in Heiz(kraft)werken</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Geothermie</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Die Substitution von Fernwärme und Heizstrom als Sekundärenergieträger zur Wärmebereitstellung wird zur Ermittlung der eingesparten fossilen Energieträger auf die Energie-

Tabelle 51: Primärenergiefaktoren zur Berechnung des Primärenergieverbrauchs für die Bereitstellung von Wärme – Bezugsjahr 2016 [19].

<table>
<thead>
<tr>
<th>Energieträger</th>
<th>Primärenergieverbrauch (fossil) in kWh_prim/kWh_end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas</td>
<td>1,29</td>
</tr>
<tr>
<td>Heizöl</td>
<td>1,38</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>1,53</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>1,76</td>
</tr>
<tr>
<td>Fernwärme (einschließlich Netzverluste)</td>
<td>2,15</td>
</tr>
<tr>
<td>Strom</td>
<td>1,62</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>0,14</td>
</tr>
<tr>
<td>Wärmepumpen</td>
<td>0,70</td>
</tr>
<tr>
<td>Biogas</td>
<td>0,07</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>0,05</td>
</tr>
<tr>
<td>Geothermie</td>
<td>0,25</td>
</tr>
</tbody>
</table>

A.2 Ermittlung vermiedener Emissionen von Treibhausgasen und Luftschadstoffen für geförderte Anlagen mit Standort in Deutschland

- Treibhausgase (CO$_2$, CH$_4$, N$_2$O sowie das daraus ermittelte CO$_2$-Äquivalent)
- Säurebildner (SO$_2$, NO$_x$ sowie das daraus ermittelte SO$_2$-Äquivalent)
- Vorläuferstoffe für bodennahes Ozon (NMVOC) und
- Feinstaub.

Zur Ermittlung der CO$_2$- bzw. SO$_2$-Äquivalente wurden folgende Treibhausgas- bzw. Versauerungspotenziale zugrunde gelegt:

Tabelle 52: Relatives Treibhauspotenzial von Treibhausgasen (CO$_2$, CH$_4$, N$_2$O) bzw. Versauerungspotenzial (SO$_2$, NO$_x$) von Säurebildnern.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Relatives Treibhauspotenzial8 bzw. Versauerungspotenzial9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Methan</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>Distickstoffoxid</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Schwefeldioxid</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>Stickoxide</td>
</tr>
</tbody>
</table>

Grundlage für die Netto-Einsparfaktoren sind die Emissionen, die im Zusammenhang mit der Nutzung fossiler und erneuerbarer Energieträger entstehen. Bilanziert werden neben den direkt aus dem Anlagenbetrieb resultierenden Emissionen (direkte Emissionen) auch diejenigen Emissionen, die in der jeweiligen Vorkette entstehen (indirekte Emissionen).

8 Bezogen auf einen Zeithorizont von 100 Jahren mit CO$_2$ als Referenzsubstanz.
9 Bezogen auf SO$_2$ als Referenzsubstanz.
Für die Technologien zur Stromerzeugung wurden folgende Einsparfaktoren zur Berechnung der vermeidenen Treibhausgas- und Luftschadstoffemissionen genutzt (vgl. Tabelle 53):

Tabelle 53: Einsparfaktoren zur Berechnung der vermeidenen Treibhausgasemissionen und Luftschadstoffemissionen für die Stromerzeugung aus Erneuerbaren Energien – Bezugsjahr 2016 [19].

<table>
<thead>
<tr>
<th>g/kWh<sub>el</sub></th>
<th>Wasser-kraft</th>
<th>Windenergie an Land</th>
<th>Windenergie auf See</th>
<th>Photovoltaik</th>
<th>Geothermie</th>
<th>Feste Biomasse</th>
<th>Biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO<sub>2</sub></td>
<td>677,2</td>
<td>618,3</td>
<td>622,4</td>
<td>556,2</td>
<td>505,5</td>
<td>635,0</td>
<td>610,9</td>
</tr>
<tr>
<td>CH<sub>4</sub></td>
<td>2,62</td>
<td>2,38</td>
<td>2,39</td>
<td>2,22</td>
<td>2,33</td>
<td>2,46</td>
<td>-5,30</td>
</tr>
<tr>
<td>N<sub>2</sub>O</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
<td>-0,02</td>
<td>-0,19</td>
</tr>
<tr>
<td>CO<sub>2</sub>-Äquivalente</td>
<td>745,7</td>
<td>680,6</td>
<td>685,1</td>
<td>613,9</td>
<td>564,1</td>
<td>690,0</td>
<td>422,9</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>0,30</td>
<td>0,26</td>
<td>0,26</td>
<td>0,20</td>
<td>0,19</td>
<td>0,09</td>
<td>-0,33</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>0,50</td>
<td>0,46</td>
<td>0,47</td>
<td>0,39</td>
<td>0,29</td>
<td>-0,65</td>
<td>-1,35</td>
</tr>
<tr>
<td>SO<sub>2</sub>-Äquivalente</td>
<td>0,65</td>
<td>0,58</td>
<td>0,59</td>
<td>0,47</td>
<td>0,39</td>
<td>-0,36</td>
<td>-1,27</td>
</tr>
<tr>
<td>Feinstaub</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>-0,01</td>
<td>0,01</td>
<td>-0,02</td>
<td>-0,03</td>
</tr>
<tr>
<td>NMVOC</td>
<td>0,03</td>
<td>0,02</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td>-0,12</td>
<td>-0,08</td>
</tr>
</tbody>
</table>

Die entsprechenden Faktoren für die Wärmebereitstellung aus Erneuerbaren Energien zeigt die folgende Tabelle 54:

Tabelle 54: Einsparfaktoren zur Berechnung der vermeidenen Treibhausgasemissionen und Luftschadstoffemissionen für die Wärmeerzeugung aus Erneuerbaren Energien – Bezugsjahr 2016 [19].

<table>
<thead>
<tr>
<th>g/kWh<sub>End</sub></th>
<th>Biomasse Heiz(kraft)werk</th>
<th>Biogas BHKW</th>
<th>Solarthermie</th>
<th>Geothermie</th>
<th>Wärmepumpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO<sub>2</sub></td>
<td>204,4</td>
<td>296,9</td>
<td>249,5</td>
<td>296,6</td>
<td>179,7</td>
</tr>
<tr>
<td>CH<sub>4</sub></td>
<td>0,76</td>
<td>-3,18</td>
<td>0,39</td>
<td>1,12</td>
<td>0,25</td>
</tr>
<tr>
<td>N<sub>2</sub>O</td>
<td>-0,01</td>
<td>-0,09</td>
<td>0,00</td>
<td>0,01</td>
<td>-0,01</td>
</tr>
<tr>
<td>CO<sub>2</sub>-Äquivalente</td>
<td>219,8</td>
<td>190,5</td>
<td>260,2</td>
<td>326,9</td>
<td>183,9</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>0,12</td>
<td>-0,19</td>
<td>0,04</td>
<td>0,23</td>
<td>-0,05</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>-0,29</td>
<td>-0,44</td>
<td>0,18</td>
<td>0,35</td>
<td>0,05</td>
</tr>
<tr>
<td>SO<sub>2</sub>-Äquivalente</td>
<td>-0,08</td>
<td>-0,50</td>
<td>0,17</td>
<td>0,47</td>
<td>-0,02</td>
</tr>
<tr>
<td>Feinstaub</td>
<td>0,00</td>
<td>-0,01</td>
<td>0,00</td>
<td>0,08</td>
<td>0,00</td>
</tr>
<tr>
<td>NMVOC</td>
<td>-0,29</td>
<td>-0,44</td>
<td>0,18</td>
<td>0,35</td>
<td>0,05</td>
</tr>
</tbody>
</table>
A.3 Ermittlung vermiedener Treibhausgasemissionen für geförderte Anlagen mit Standort im Ausland

Für die betrachteten Länder, in denen außerhalb Deutschlands KfW-geförderte Anlagen errichtet wurden, existiert keine dem für Deutschland genutzten Ansatz vergleichbare Berechnungsbasis zur Ermittlung der Treibhausgaseinsparung. Die Bestimmung von EE-spezifischen Einsparfaktoren unter Berücksichtigung von Einspeise- und Substitutionsprofilen und der indirekten Emissionen (Vorketten) ist methodisch herausfordernd, wie die für Deutschland zugrundeliegenden Studien [18, 19]) zeigen. Vor diesem Hintergrund wurde in der vorliegenden Studie für die Ermittlung der vermiedenen CO₂-Emissionen der im Ausland geförderten Anlagen ein vereinfachter, konsistenter Ansatz gewählt.

Tabelle 55: CO₂-Emissionsfaktor des Strommixes für die betrachteten Länder, Bezugsjahr 2015 [20]

<table>
<thead>
<tr>
<th>Land</th>
<th>g/kWhₐl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dänemark</td>
<td>168</td>
</tr>
<tr>
<td>Finnland</td>
<td>141</td>
</tr>
<tr>
<td>Frankreich</td>
<td>42</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>415</td>
</tr>
<tr>
<td>Irland</td>
<td>409</td>
</tr>
<tr>
<td>Italien</td>
<td>305</td>
</tr>
<tr>
<td>Japan</td>
<td>556 *</td>
</tr>
<tr>
<td>Kanada</td>
<td>125 *</td>
</tr>
<tr>
<td>Kroatien</td>
<td>235</td>
</tr>
<tr>
<td>Niederlande</td>
<td>383</td>
</tr>
<tr>
<td>Österreich</td>
<td>133</td>
</tr>
<tr>
<td>Schweden</td>
<td>21</td>
</tr>
</tbody>
</table>

* Japan: Wert für 2014 aus [21]
Kanada: eigene Berechnungen auf Basis von [22, 23]

Zur vorgelagerten Ermittlung der zu erwartenden Jahresstrommengen wurden für die einzelnen EE-Technologien länderspezifische Volllaststunden abgeschätzt. Grundlage dafür bildeten [24, 25].
A.4 Bewertung externer Kosten durch Emission von Treibhausgasen und Luftschadstoffen

Auf wissenschaftlicher Ebene besteht Konsens, dass zur Ermittlung von Schadenskosten der sog. Wirkungspfadansatz angewendet werden sollte, sofern die Daten- und Informationsgrundlage dafür ausreichen (vgl. auch die Empfehlungen der Methodenkonvention 2.0 zur Schätzung von Umweltkosten des Umweltbundesamtes [26]). Abbildung 9 illustriert das Vorgehen des Wirkungspfadansatzes.

Abbildung 9: Der Wirkungspfadansatz zur Berechnung externer Umweltkosten.
Dabei wird die kausale Wirkungskette von der Umwelteinwirkung über die Vermittlung (z.B. Schadstofftransport und evtl. auftretende chemische Umwandlungsprozesse wie die Bildung von Ozon aus NO\textsubscript{x} und NMVOC) bis hin zur Wirkung auf verschiedene Rezeptoren (z.B. Menschen, Pflanzen) mit Hilfe von Modellen abgebildet. Die Vermittlung kann auch den Transport von Stoffen über mehrere Medien hinweg (z.B. Deposition von Luftschadstoffen auf dem Boden, Eintrag in das Grundwasser, Weiterleitung in Oberflächenwasser usw.) umfassen. Der letzte Schritt zur Ermittlung von Kosten besteht darin, die quantifizierten physischen Schäden monetär zu bewerten. Die ermittelten Geldwerte geben die veränderten direkten Nutzen durch Einflüsse auf Wohlbefinden und Gesundheit, Nutzungsmöglichkeiten der Umwelt oder sonstiger betroffener Güter wieder, also den Nutzenverlust für die Betroffenen.

A.5 Referenzanlagen

Im Förderjahr 2016 ist eine Biogasleitung zum Transport von unaufbereitetem Rohgas gefördert worden. Die Nutzung von Rohgasleitungen als sogenanntes Mikrogasnetz dient in der Regel einer höheren Wärmennutzung durch die Aufteilung des Biogases auf mehrere BHKW. Somit werden anstatt eines zentralen Groß-BHKW zwei oder mehrere dezent-
rale BHKW eingesetzt, deren Dezentralität eine erhöhte Wärmenutzung gegenüber einem zentralen Groß-BHKW erlaubt.

Im Hinblick auf die Einsparung von fossilen Energieträgern und Emissionen von PV-Speichern sind grundsätzlich drei Wirkungsebenen zu berücksichtigen:

1) **Veränderung des Einspeise- und Substitutionsprofils:** Durch die Speicherung und damit die zeitlich verlagerte Nutzung des PV-Stroms verändert sich das Substitutionsprofil des bereitgestellten PV-Stroms. Zum Zeitpunkt der Berichterstellung liegen allerdings noch keine Studien oder Erkenntnisse vor, die sich mit dieser Systemfrage beschäftigt haben. Es kann deshalb zum jetzigen Zeitpunkt keine Berücksichtigung von ggf. geänderten Substitutionsfaktoren und damit Einsparfaktoren erfolgen.

2) **Die Herstellung und der Betrieb von PV-Speichern ist mit Material- bzw. Energieaufwand verbunden.** Für die von der KfW geförderten EE-Technologien werden diese Effekte mittels der Netto-Einsparfaktoren des UBA [19] berücksichtigt. In die verfügbaren Angaben des UBA zur Emissionsbilanz erneuerbarer Energieträger gehen je-

\(^\text{10}\) Dies umfasst nicht diejenigen Nahwärmenetze, bei denen gleichzeitig eine Anlage zur Wärmebereitstellung gefördert wurde, welche zusammen mit diesen Anlagen ausgewertet wurden.
doch die PV-Speicher noch nicht ein. Deshalb kann der mit der Herstellung und dem Betrieb der Speicher verbundene Energieaufwand zum Zeitpunkt der Berichterstellung noch nicht berücksichtigt werden.

Vor dem Hintergrund der geschilderten Datenlage kann zum Zeitpunkt der Berichterstellung lediglich der Wirkungsgradverlust der Speicher berücksichtigt werden. Es wird angestrebt, im Zuge der weiteren Evaluierung die anderen genannten Effekte in der Berechnung der Minderungswirkungen abzubilden. Voraussetzung dafür ist die entsprechende Berücksichtigung der Substitutionseffekte in der den Substitutionsfaktoren zugrundeliegenden Studie sowie im Rahmen der Emissionsbilanz des UBA.

Für große Batteriespeicher liegen aktuell keine Daten vor, die eine belastbare Ermittlung von Wirkungen erlauben würden.

In den folgenden Tabellen werden für die einzelnen EE-Technologien die eingangs erwähnten Ausgangsdaten zur Berechnung der Energiemengen (Strom und Wärme) und der jährlichen Betriebskosten dargestellt (Referenzanlagen). Sofern die Betriebskosten über Anteile an der Investitionssumme ermittelt werden, wurden die Investitionssummen der geförderten Vorhaben zugrunde gelegt.
Tabelle 56: Parameter zur Berechnung der Photovoltaikanlagen bis 100 kWₚ.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifischer Stromertrag</td>
<td>900</td>
<td>kWh/kWₚ</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>1,0</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Versicherung, Verwaltung, Pacht</td>
<td>0,5</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>

Tabelle 57: Parameter zur Berechnung der Photovoltaikanlagen von 101 bis 1.000 kWₚ.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifischer Stromertrag</td>
<td>900</td>
<td>kWh/kWₚ</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>1,0</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Versicherung, Verwaltung, Pacht</td>
<td>0,5</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>

Tabelle 58: Parameter zur Berechnung der Photovoltaikanlagen über 1.000 kWₚ.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifischer Stromertrag</td>
<td>950</td>
<td>kWh/kWₚ</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>1,0</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Versicherung, Verwaltung, Pacht</td>
<td>0,5</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>

Tabelle 59: Parameter zur Berechnung der Windenergieanlagen (onshore).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volllaststunden</td>
<td>2.100</td>
<td>h</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>34</td>
<td>€/(kW*a)</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>0,7</td>
<td>ct/kWhₑₑ</td>
</tr>
</tbody>
</table>

Tabelle 60: Parameter zur Berechnung der Windenergieanlagen (offshore).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volllaststunden</td>
<td>3.850</td>
<td>h</td>
</tr>
<tr>
<td>Kosten für Versicherung</td>
<td>20</td>
<td>€/(kW*a)</td>
</tr>
<tr>
<td>Betriebs- und Wartungskosten</td>
<td>80</td>
<td>€/(kW*a)</td>
</tr>
</tbody>
</table>

Tabelle 61: Parameter zur Berechnung der Biomasse-Heizkraftwerke.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volllaststunden</td>
<td>5.000</td>
<td>h</td>
</tr>
<tr>
<td>Wärmenutzung</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>Personaleinsatz</td>
<td>0,5</td>
<td>a</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>1,5</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Versicherung, Verwaltung, Pacht</td>
<td>1,0</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>
Tabelle 62: Parameter zur Berechnung der Biogasanlagen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volllaststunden</td>
<td>6.000</td>
<td>h</td>
</tr>
<tr>
<td>Wärmenutzung</td>
<td>25</td>
<td>%</td>
</tr>
<tr>
<td>Personaleinsatz</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>3.0</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Versicherung, Verwaltung, Pacht</td>
<td>1.0</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>

Tabelle 63: Parameter zur Berechnung der Wasserkraftanlagen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volllaststunden</td>
<td>5.000</td>
<td>h</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>2.2</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Versicherung, Verwaltung</td>
<td>0.3</td>
<td>%/a von I₀</td>
</tr>
<tr>
<td>Sonstige variable Kosten</td>
<td>5</td>
<td>€/MWh</td>
</tr>
</tbody>
</table>

Tabelle 64: Parameter zur Berechnung der solarthermischen Anlagen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifischer Wärmeertrag</td>
<td>370</td>
<td>kWh/(m²·a)</td>
</tr>
<tr>
<td>Wartung, Reparatur und Betrieb</td>
<td>1.5</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>

Tabelle 65: Parameter zur Berechnung der großen Wärmepumpen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahresarbeitszahl Strom (Gas)</td>
<td>4,2 (1,5)</td>
<td>-</td>
</tr>
<tr>
<td>Wartung, Reparatur und Betrieb</td>
<td>3.5</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>

Tabelle 66: Parameter zur Berechnung der Biogasleitungen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volllaststunden</td>
<td>6.000</td>
<td>h</td>
</tr>
<tr>
<td>zusätzliche Wärmenutzung</td>
<td>1.380</td>
<td>MWh/a</td>
</tr>
<tr>
<td>Stromverbrauch Gastrocknung, -verdichtung</td>
<td>72</td>
<td>MWh/a</td>
</tr>
</tbody>
</table>

Tabelle 67: Parameter zur Berechnung der Wärmenetze mit Wärmeinspeisung aus einem Holzheizwerk.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>zusätzliche Wärmebereitstellung</td>
<td>70</td>
<td>MWh/a</td>
</tr>
<tr>
<td>Wartung, Reparatur und Betrieb</td>
<td>1.5</td>
<td>%/a von I₀</td>
</tr>
</tbody>
</table>
Tabelle 68: Parameter zur Berechnung der Wärmenetze mit Wärmeeinspeisung aus einer Biogasanlage.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>zusätzliche Wärmebereitstellung</td>
<td>550</td>
<td>MWh/a</td>
</tr>
<tr>
<td>Wartung, Reparatur und Betrieb</td>
<td>1,5</td>
<td>%/a von (I_o)</td>
</tr>
</tbody>
</table>

Tabelle 69: Parameter zur Berechnung der Biomasse-Heizwerke (ohne Nahwärmenetz).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollaststunden</td>
<td>1.500</td>
<td>h</td>
</tr>
<tr>
<td>Wartung, Reparatur und Betrieb</td>
<td>6</td>
<td>%/a von (I_o)</td>
</tr>
</tbody>
</table>

Tabelle 70: Parameter zur Berechnung der Biomasse-Heizwerke (mit Nahwärmenetz).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollaststunden</td>
<td>2.500</td>
<td>h</td>
</tr>
<tr>
<td>Wartung, Reparatur und Betrieb</td>
<td>6</td>
<td>%/a von (I_o)</td>
</tr>
</tbody>
</table>
A.6 Energiepreise

Tabelle 71: Angesetzte Grenzübergangspreise (Importpreise) für fossile Energieträger [9]

<table>
<thead>
<tr>
<th>€2013/GJ</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohöl</td>
<td>12,8</td>
<td>14,5</td>
<td>16</td>
<td>16,6</td>
<td>17,2</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>2,4</td>
<td>2,9</td>
<td>3,5</td>
<td>3,7</td>
<td>3,8</td>
</tr>
<tr>
<td>Erdgas</td>
<td>7,5</td>
<td>8,1</td>
<td>8,8</td>
<td>9,4</td>
<td>9,7</td>
</tr>
</tbody>
</table>

Tabelle 72: Übersicht über die angesetzten Energiepreise (Annuitäten) für die betrachteten Förderjahre 2015 und 2016

<table>
<thead>
<tr>
<th>€2014/GWh</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohöl (Importpreis)</td>
<td>50.074</td>
<td>52.223</td>
</tr>
<tr>
<td>Steinkohle (Importpreis)</td>
<td>10.818</td>
<td>11.093</td>
</tr>
<tr>
<td>Erdgas (Importpreis)</td>
<td>28.553</td>
<td>29.666</td>
</tr>
</tbody>
</table>

Durch die geänderten Ausgangsjahre und die Nutzung der Daten des Projektionsberichts resultieren abweichende Annuitäten im Vergleich zu den Vorgängerstudien. Aufgrund der Volatilität der Energiepreise sowie von Prognoseunsicherheiten lässt sich dies allerdings nicht vermeiden.
A.7 Ermittlung von Bruttobeschäftigungseffekten in Deutschland

Die Schätzung der durch die Fördermaßnahmen der KfW im Bereich der Erneuerbaren Energien ausgelösten Bruttobeschäftigung basiert auf einem nachfrageorientierten Ansatz, der als Ausgangspunkt die durch die unterschiedlichen Förderprogramme ausgelöste Nachfrage nach Gütern hat. Als wesentliche Komponenten der in die Untersuchung einbezogenen Nachfrage werden die Investitionen in neu installierte Anlagen zur Nutzung Erneuerbarer Energien sowie die damit über den gesamten unterstellten Lebenszyklus der Anlagen verbundenen laufenden Aufwendungen zum Betrieb und zur Wartung berücksichtigt.

Die modellgestützte Berechnung der Bruttobeschäftigung basiert auf der Input-Output-Analyse bzw. methodisch präzise ausgedrückt auf der Anwendung des offenen statischen Input-Output-Mengenmodells. Mit diesem Schätzansatz werden nicht nur die (direkten) Beschäftigten ermittelt, die in den Unternehmen arbeiten, die selbst die nachgefragten Güter wie Anlagen zur Nutzung Erneuerbarer Energien produzieren, sondern es werden auch die Beschäftigten erfasst, die in jenen Unternehmen arbeiten, die Vorprodukte zur Herstellung der gefertigten Anlagen bereitstellen. Es werden mit dieser Methode also auch jene Beschäftigungssanteile abgeschätzt, die indirekt in den Vorleistungen zur Herstellung von nachgefragten Anlagen enthalten sind. Falls beispielsweise ein Mitarbeiter in einem Stahlwerk Stahl produziert, der später beim Bau einer Windkraftanlage Verwendung findet, wird genau der entsprechende Anteil des Arbeitsvolumens des Mitarbeiters modellmäßig der hier betrachteten Beschäftigung zugerechnet, obwohl dem

11 Andere mit der Nutzung der geförderten Anlagen verbundene Nachfrageelemente, wie zum Beispiel die mit der Verteilung oder dem Verkauf des produzierten Ökostroms verbundene Beschäftigung, bleiben unberücksichtigt.
12 Unter methodischer Perspektive erfolgt eine Zurechnung der Produktionswirkungen und daraus abgeleiteter Beschäftigungswirkungen zu empirisch ermittelten Endnachfragekomponenten.
Mitarbeiter selbst der Zusammenhang seiner Tätigkeit mit Erneuerbaren Energien unbekannt ist.

Das methodische Vorgehen setzt als wichtige Bausteine folgende Elemente voraus:

- Eine Beschreibung der erneuerbaren Energietechnologien im Analyserahmen der Input-Output-Analyse, insbesondere eine Beschreibung der neu definierten Produktionsbereiche

- Als Input-Output-Tabelle für Deutschland wird für die Sparten der erneuerbaren Energien die Tabelle für das Berichtsjahr 2012 (vgl. [29]) verwendet. Um die Vergleichbarkeit der Schätzungen mit der Studie [14] zu gewährleisten, wurde auf die Berücksichtigung der zwischenzeitlich veröffentlichten Tabelle 2013 verzichtet. Für die Bereiche Wärmenetze, Wärmespeicher und kleine Batteriespeicher lagen
